Chapter 12: Problem 1037
The value of the integral \({ }^{1} \int_{0}\left(x^{5}+6 x^{4}+5 x^{3}+4 x^{2}+3 x+1\right) e^{x-1} d x\) is equal to...... (a) 5 (b) \(5 \mathrm{e}\) (c) \(5 \mathrm{e}^{2}\) (d) \(5 \mathrm{e}^{4}\)
Chapter 12: Problem 1037
The value of the integral \({ }^{1} \int_{0}\left(x^{5}+6 x^{4}+5 x^{3}+4 x^{2}+3 x+1\right) e^{x-1} d x\) is equal to...... (a) 5 (b) \(5 \mathrm{e}\) (c) \(5 \mathrm{e}^{2}\) (d) \(5 \mathrm{e}^{4}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeK \int_{-K}|x| d x=(1 / K) ;\( where \)K \in N\( then \)K\( is \)\ldots \ldots \ldots$ (a) 0 (b) 1 (c) 2 (d) not possible
The value of the integral \(\left.\left.{ }^{1} \int_{0} \log [\sqrt{(} 1-\mathrm{x})+\sqrt{(} 1+\mathrm{x}\right)\right] \mathrm{d} \mathrm{x}\) is \(\ldots \ldots\) (a) \((1 / 2)[\log (2)-(1 / 2)+(\pi / 4)]\) (b) \((1 / 2)[\log 2-1+(\pi / 2)]\) (c) \((1 / 3)[\log 4-1+(\pi / 4)]\) (d) \((1 / 4)[\log 3-1+(\pi / 2)]\)
The area of the region bounded by curves \(x^{2}+y^{2}=4, x=1\) \(\& x=\sqrt{3}\) is..... (a) \((\pi / 3)\) sq. unit (b) \((2 \pi / 3)\) sq. unit (c) \((5 \pi / 6)\) sq. unit (d) \((4 \pi / 3)\) sq. unit
\(\quad 12-1012:(\pi / 9) \int_{0}(\tan x+\tan 2 x+\tan 3 x+\tan x \cdot \tan 2 x \cdot \tan 3 x) d x\) is equal to....... (a) \((1 / 3) \log 2\) (b) \(\log ^{3} \sqrt{4}\) (c) \(3 \log 2\) (d) \(4 \log \sqrt{3}\)
The value of \((e)^{2} \int_{e}[d x /(\log x)]-2 \int_{1}\left(e^{x} / x\right) d x\) is...... (a) \(\mathrm{e}^{2}\) (b) e (c) \((1 / e)\) (d) 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.