Chapter 12: Problem 1037
The value of the integral \({ }^{1} \int_{0}\left(x^{5}+6 x^{4}+5 x^{3}+4 x^{2}+3 x+1\right) e^{x-1} d x\) is equal to...... (a) 5 (b) \(5 \mathrm{e}\) (c) \(5 \mathrm{e}^{2}\) (d) \(5 \mathrm{e}^{4}\)
Chapter 12: Problem 1037
The value of the integral \({ }^{1} \int_{0}\left(x^{5}+6 x^{4}+5 x^{3}+4 x^{2}+3 x+1\right) e^{x-1} d x\) is equal to...... (a) 5 (b) \(5 \mathrm{e}\) (c) \(5 \mathrm{e}^{2}\) (d) \(5 \mathrm{e}^{4}\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\pi \int_{-\pi}\left[\\{2 x(1+\sin x)\\} /\left(1+\cos ^{2} x\right)\right] d x\) is equal to....... (a) 0 (b) (c) \(\left(\pi^{2} / 2\right)\) (d) \(\pi^{2}\)
If \(h(x)=[f(x)+g(x)][g(x)-f(x)]\) where \(f\) is an odd and \(g\) is an even function the \((\pi / 2) \int_{[(-\pi) / 2]} h(x) d x\) is equal to....... (a) 0 (b) \((\pi / 2)\) (c) \((\pi / 2) \int_{0} h(x) d x\) (d) \(2^{(\pi / 2)} \int_{0} h(x) d x\)
The value of \((e)^{2} \int_{e}[d x /(\log x)]-2 \int_{1}\left(e^{x} / x\right) d x\) is...... (a) \(\mathrm{e}^{2}\) (b) e (c) \((1 / e)\) (d) 0
The area enclosed between the curves \(y=\log _{e}(x+e)\) and the coordinate axes is...... (a) 1 (b) 4 (c) 2 (d) 3
If \(\mathrm{f}\) is an even function and \({ }^{2} \int_{0} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{K}\) then \({ }^{1} \int_{-1}\left[\left(x^{2}-1\right) / x^{2}\right] f[x+(1 / x)] d x\) is equal to...... (a) 0 (b) \(2 \mathrm{~K}\) (c) \(\mathrm{K}\) (d) \(4 \mathrm{~K}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.