Chapter 12: Problem 1042
\((\pi / 4) \int_{0} \log (\cot 2 x)^{\sin 4 x} d x\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 8)\) (d) \((\pi / 2)\)
Chapter 12: Problem 1042
\((\pi / 4) \int_{0} \log (\cot 2 x)^{\sin 4 x} d x\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 8)\) (d) \((\pi / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of the integral \(\pi \int_{-\pi}\left[\left(\cos ^{2} x\right) /\left(1+3^{x}\right)\right] d x\) is \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 2)\) (d) \(\pi\)
\(R \rightarrow R\) and satisfies \(f(2)=-1, f^{\prime}(2)=4\) If \(3 \int_{2}(3-x) f^{\prime \prime}(x) d x=7\), then \(f(3)\) is equal to \(\ldots \ldots\) (a) 2 (b) 4 (c) 8 (d) 10
The area enclosed by the parabola \(x^{2}=4\) by and its latusrectum is \((4 / 3)\) then \(b>0\) is equal to....... (a) 2 (b) \(\sqrt{2}\) (c) 1 (d) 4
\((\pi / 4) \int_{0}\left[(\sin 2 \theta) /\left(\cos ^{4} \theta+\sin ^{4} \theta\right)\right] \mathrm{d} \theta\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 8)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
The value of \((\pi / 4)\\}_{0}\left[\left(8 \tan ^{2} x+8 \tan x+8\right)\right.\) \(\left./\left(\tan ^{2} x+2 \tan x+1\right)\right] d x\) is \(\ldots \ldots\) (a) 0 (b) \(\pi\) (c) \(\pi+2\) (d) \(\pi-2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.