Chapter 12: Problem 1044
\(\pi \int_{-\pi}\left[\\{2 x(1+\sin x)\\} /\left(1+\cos ^{2} x\right)\right] d x\) is equal to....... (a) 0 (b) (c) \(\left(\pi^{2} / 2\right)\) (d) \(\pi^{2}\)
Chapter 12: Problem 1044
\(\pi \int_{-\pi}\left[\\{2 x(1+\sin x)\\} /\left(1+\cos ^{2} x\right)\right] d x\) is equal to....... (a) 0 (b) (c) \(\left(\pi^{2} / 2\right)\) (d) \(\pi^{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(1 \int_{0} \sqrt{x} \sqrt{(1-\sqrt{x}) d x}\) is equal to...... (a) \((4 / 105)\) (b) \((8 / 105)\) (c) \((16 / 105)\) (d) \((32 / 105)\)
\((1 / e) \int_{1}[(\log t) /(1+t)] d t+e \int_{1}[(\log t) /(1+t)] d t\) is equal to...... (a) \(\mathrm{e}\) (b) \((1 / e)\) (c) 2 (d) \((1 / 2)\)
\( \quad a \int_{-a}[\\{(|x+a|) /(x+a)\\}+\\{(|x-a|) /(x-a)\\}] d x\) is equal to \(\ldots \ldots\) (where \(a>0)\) (a) 0 (b) a (c) \(2 \mathrm{a}\) (d) \(4 \mathrm{a}\)
The value of the integral \(\pi \int_{-\pi}\left[\left(\cos ^{2} x\right) /\left(1+3^{x}\right)\right] d x\) is \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 2)\) (d) \(\pi\)
\((\pi / 2) \int_{0} \sqrt{(\sec x+1) d x}\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 2)\) (d) \(\pi\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.