Chapter 12: Problem 1044
\(\pi \int_{-\pi}\left[\\{2 x(1+\sin x)\\} /\left(1+\cos ^{2} x\right)\right] d x\) is equal to....... (a) 0 (b) (c) \(\left(\pi^{2} / 2\right)\) (d) \(\pi^{2}\)
Chapter 12: Problem 1044
\(\pi \int_{-\pi}\left[\\{2 x(1+\sin x)\\} /\left(1+\cos ^{2} x\right)\right] d x\) is equal to....... (a) 0 (b) (c) \(\left(\pi^{2} / 2\right)\) (d) \(\pi^{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of integral \(\pi \int_{0}[\\{\sin (2 n+1)(x / 2)\\} /\\{\sin (x / 2)\\}] d x\) is...... (a) 0 (b) \((\pi / 2)\) (c) \(\pi\) (d) \(2 \pi\)
The area of the region bounded by the lines \(y=m x, x=1\), \(\mathrm{x}=2\) and \(\mathrm{x}\) -axis is \(6 \mathrm{Sq}\). unit then \(\mathrm{m}\) is....... (a) 1 (b) 2 (c) 3 (d) 4
\(\pi \int_{0}[(\sin 100 \mathrm{x}) /(\sin \mathrm{x})] \mathrm{d} \mathrm{x}\) is equal to \(\ldots \ldots\) (a) 0 (b) \(\pi\) (c) \((\pi / 2)\) (d) \(2 \pi\)
If \(\mathrm{f}\) is an even function and \({ }^{2} \int_{0} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{K}\) then \({ }^{1} \int_{-1}\left[\left(x^{2}-1\right) / x^{2}\right] f[x+(1 / x)] d x\) is equal to...... (a) 0 (b) \(2 \mathrm{~K}\) (c) \(\mathrm{K}\) (d) \(4 \mathrm{~K}\)
The area bounded by the curves \(x^{2}=y\) and \(2 x+y-8=0\) and \(y\) -axis in the second quadrant is...... (a) 9 Sq. unit (b) 18 Sq. unit (c) \((80 / 3)\) Sq. unit (d) 36 Sq. unit
What do you think about this solution?
We value your feedback to improve our textbook solutions.