Chapter 12: Problem 1048
If \(a<0
Chapter 12: Problem 1048
If \(a<0
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of integral \({ }^{1} \int_{0}\left[1 /\left\\{1-\mathrm{x}+\sqrt{\left. \left.\left(2 \mathrm{x}-\mathrm{x}^{2}\right)\right\\}\right] \mathrm{d} \mathrm{x} \text { is...... }}\right.\right.\) (a) 1 (b) \((1 / 2)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
The area enclosed by \(\mathrm{y}^{2}=32 \mathrm{x}\) and \(\mathrm{y}=\mathrm{m} \mathrm{x}(\mathrm{m}>0)\) is \((8 / 3)\) then \(\mathrm{m}\) is....... (a) 1 (b) 2 (c) 4 (d) \((1 / 4)\)
The area of common region of the circle \(x^{2}+y^{2}=1\) and \((x-1)^{2}+y^{2}=1\) is given by (a) \((2 \pi / 3)+\sqrt{(3 / 2)}\) (b) \((\pi / 3)-\sqrt{(3 / 2)}\) (c) \((\pi / 3)+\sqrt{(3 / 2)}\) (d) \((2 \pi / 3)-(\sqrt{3} / 2)\)
The value of the integral \(\left.{ }^{1} \int_{-1} \log \left[1 /\left\\{x+\sqrt{(} x^{2}+1\right)\right\\}\right] d x\) is \(\ldots \ldots\) (a) \(\log 2\) (b) 0 (c) \(\log 3\) (d) not possible
The area of the region bounded by curves \(x^{2}+y^{2}=4, x=1\) \(\& x=\sqrt{3}\) is..... (a) \((\pi / 3)\) sq. unit (b) \((2 \pi / 3)\) sq. unit (c) \((5 \pi / 6)\) sq. unit (d) \((4 \pi / 3)\) sq. unit
What do you think about this solution?
We value your feedback to improve our textbook solutions.