Chapter 12: Problem 1048
If \(a<0
Chapter 12: Problem 1048
If \(a<0
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area bounded by the curves \(y=x^{2}\) and \(y=|x|\) is...... (a) 1 Sq. unit (b) 2 Sq. unit (c) \((1 / 3)\) Sq. unit (d) \((2 / 3)\) Sq. unit
The value of the integral \(\pi \int_{-\pi}\left[\left(\cos ^{2} x\right) /\left(1+3^{x}\right)\right] d x\) is \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 2)\) (d) \(\pi\)
The value of the integral \({ }^{1} \int_{0} 2^{2 \mathrm{x}} \cdot 3^{-\mathrm{x}} \mathrm{dx}\) is \(\ldots \ldots \ldots\) (a) \(\log _{\mathrm{e}}(64 / 27)\) (b) \(\log _{\mathrm{e}}(27 / 64)\) (c) \(\log _{(3 / 4)}\) e (d) \(\log _{(64 / 27)} \mathrm{e}\)
\((\pi / 2) \int_{(\pi / 4)} \sqrt{(1-\sin 2 x) d x}\) is equal to \(\ldots \ldots \ldots\) (a) \(\sqrt{2}+1\) (b) \(\sqrt{2}-1\) (c) \(1-\sqrt{2}\) (d) 0
The value of \((e)^{2} \int_{e}[d x /(\log x)]-2 \int_{1}\left(e^{x} / x\right) d x\) is...... (a) \(\mathrm{e}^{2}\) (b) e (c) \((1 / e)\) (d) 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.