Chapter 12: Problem 1049
\((\pi / 2) \int_{0} \sqrt{(\sec x+1) d x}\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 2)\) (d) \(\pi\)
Chapter 12: Problem 1049
\((\pi / 2) \int_{0} \sqrt{(\sec x+1) d x}\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 2)\) (d) \(\pi\)
All the tools & learning materials you need for study success - in one app.
Get started for freeif \(\mathrm{f}(\mathrm{x})=\mathrm{x} \int_{0} \log [(1-\mathrm{t}) /(1+\mathrm{t})] \mathrm{dt}\) then \(\mathrm{f}(1 / 2)-\mathrm{f}[(-1) / 2]\) is equals (a) 0 (b) \((1 / 2)\) (c) \([(-1) / 2]\) (d) 1
\(R \rightarrow R\) and satisfies \(f(2)=-1, f^{\prime}(2)=4\) If \(3 \int_{2}(3-x) f^{\prime \prime}(x) d x=7\), then \(f(3)\) is equal to \(\ldots \ldots\) (a) 2 (b) 4 (c) 8 (d) 10
The area bounded by \(|x|-|y|=2\) is........ (a) 2 Sq. unit (b) 4 Sq. unit (c) 8 Sq. unit (d) \(16 \mathrm{Sq}\). unit
The value of the integral \({ }^{1} \int_{0} \log [(1 / x)-1] d x\) is..... (a) 1 (b) \((1 / 2)\) (c) 0 (d) 2
\((\pi / 2) \int_{0} \mathrm{e}^{(\sin )-1(x)} \cdot \mathrm{e}^{(\tan )-1[\sqrt\\{1-(x) 2\\} / x]} d x\) is equal to ...... (a) \((\pi / 2)\) (b) \((\pi / 2) \mathrm{e}^{(\pi / 2)}\) (c) \((\pi / 4) \mathrm{e}^{(\pi / 2)}\) (d) \(\mathrm{e}^{(\pi / 2)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.