Chapter 12: Problem 1058
if \(\mathrm{f}(\mathrm{x})=\mathrm{x} \int_{0} \log [(1-\mathrm{t}) /(1+\mathrm{t})] \mathrm{dt}\) then \(\mathrm{f}(1 / 2)-\mathrm{f}[(-1) / 2]\) is equals (a) 0 (b) \((1 / 2)\) (c) \([(-1) / 2]\) (d) 1
Chapter 12: Problem 1058
if \(\mathrm{f}(\mathrm{x})=\mathrm{x} \int_{0} \log [(1-\mathrm{t}) /(1+\mathrm{t})] \mathrm{dt}\) then \(\mathrm{f}(1 / 2)-\mathrm{f}[(-1) / 2]\) is equals (a) 0 (b) \((1 / 2)\) (c) \([(-1) / 2]\) (d) 1
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(h(x)=[f(x)+g(x)][g(x)-f(x)]\) where \(f\) is an odd and \(g\) is an even function the \((\pi / 2) \int_{[(-\pi) / 2]} h(x) d x\) is equal to....... (a) 0 (b) \((\pi / 2)\) (c) \((\pi / 2) \int_{0} h(x) d x\) (d) \(2^{(\pi / 2)} \int_{0} h(x) d x\)
\((\pi / 2) \int_{0} \mathrm{e}^{(\sin )-1(x)} \cdot \mathrm{e}^{(\tan )-1[\sqrt\\{1-(x) 2\\} / x]} d x\) is equal to ...... (a) \((\pi / 2)\) (b) \((\pi / 2) \mathrm{e}^{(\pi / 2)}\) (c) \((\pi / 4) \mathrm{e}^{(\pi / 2)}\) (d) \(\mathrm{e}^{(\pi / 2)}\)
The value of the integral \((\pi / 4)]_{[(-\pi) / 4]} \log (\sec \theta-\tan \theta) d \theta\) is...... (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \(\pi\) (d) 0
The value of integral \(\pi \int_{0}[\\{\sin (2 n+1)(x / 2)\\} /\\{\sin (x / 2)\\}] d x\) is...... (a) 0 (b) \((\pi / 2)\) (c) \(\pi\) (d) \(2 \pi\)
The value of the integral \({ }^{1} \int_{-1}\left(x^{2}+x\right)|x| d x\) is...... (a) 0 (b) \((1 / 2)\) (c) 1 (d) 2
What do you think about this solution?
We value your feedback to improve our textbook solutions.