Chapter 12: Problem 1058
if \(\mathrm{f}(\mathrm{x})=\mathrm{x} \int_{0} \log [(1-\mathrm{t}) /(1+\mathrm{t})] \mathrm{dt}\) then \(\mathrm{f}(1 / 2)-\mathrm{f}[(-1) / 2]\) is equals (a) 0 (b) \((1 / 2)\) (c) \([(-1) / 2]\) (d) 1
Chapter 12: Problem 1058
if \(\mathrm{f}(\mathrm{x})=\mathrm{x} \int_{0} \log [(1-\mathrm{t}) /(1+\mathrm{t})] \mathrm{dt}\) then \(\mathrm{f}(1 / 2)-\mathrm{f}[(-1) / 2]\) is equals (a) 0 (b) \((1 / 2)\) (c) \([(-1) / 2]\) (d) 1
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area enclosed between the curves \(y=\log _{e}(x+e)\) and the coordinate axes is...... (a) 1 (b) 4 (c) 2 (d) 3
The area of the region bounded by the circle \(x^{2}+y^{2}=12\) and parabola \(x^{2}=y\) is \(\ldots \ldots \ldots\) (a) \((2 \pi-\sqrt{3})\) Sq. unit (b) \(4 \pi+\sqrt{3}\) Sq. unit (c) \(2 \pi+\sqrt{3}\) Sq. unit (d) \(\pi+(\sqrt{3} / 2)\) Sq. unit
The value of the integral \((1 / 2) \int_{0}\left[d x /\left\\{(1-x)^{(3 / 2)} \sqrt{(1+x)\\}]}\right.\right.\) is.... (a) 0 (b) \((1 / 2)\) (c) \(\sqrt{3}-1\) (d) 2
The value of the integral \(\left.{ }^{1} \int_{-1} \log \left[1 /\left\\{x+\sqrt{(} x^{2}+1\right)\right\\}\right] d x\) is \(\ldots \ldots\) (a) \(\log 2\) (b) 0 (c) \(\log 3\) (d) not possible
If \(\mathrm{f}\) is an odd function the value of integral \(\mathrm{e} \int_{(1 / \mathrm{e})}(1 / \mathrm{x}) \mathrm{f}[\mathrm{x}-(1 / \mathrm{x})] \mathrm{d} \mathrm{x}\) is equal to...... (a) \(\mathrm{e}\) (b) \(\left[\left(e^{2}+1\right) / e\right]\) (c) \(\left[\left(e^{2}-1\right) / 2 e\right]\) (d) 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.