Chapter 12: Problem 1060
\(R \rightarrow R\) and satisfies \(f(2)=-1, f^{\prime}(2)=4\) If \(3 \int_{2}(3-x) f^{\prime \prime}(x) d x=7\), then \(f(3)\) is equal to \(\ldots \ldots\) (a) 2 (b) 4 (c) 8 (d) 10
Chapter 12: Problem 1060
\(R \rightarrow R\) and satisfies \(f(2)=-1, f^{\prime}(2)=4\) If \(3 \int_{2}(3-x) f^{\prime \prime}(x) d x=7\), then \(f(3)\) is equal to \(\ldots \ldots\) (a) 2 (b) 4 (c) 8 (d) 10
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of the integral \({ }^{1} \int_{0} 2^{2 \mathrm{x}} \cdot 3^{-\mathrm{x}} \mathrm{dx}\) is \(\ldots \ldots \ldots\) (a) \(\log _{\mathrm{e}}(64 / 27)\) (b) \(\log _{\mathrm{e}}(27 / 64)\) (c) \(\log _{(3 / 4)}\) e (d) \(\log _{(64 / 27)} \mathrm{e}\)
\((\pi / 4) \int_{0}\left[(\sin 2 \theta) /\left(\cos ^{4} \theta+\sin ^{4} \theta\right)\right] \mathrm{d} \theta\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 8)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
The area of common region of the circle \(x^{2}+y^{2}=1\) and \((x-1)^{2}+y^{2}=1\) is given by (a) \((2 \pi / 3)+\sqrt{(3 / 2)}\) (b) \((\pi / 3)-\sqrt{(3 / 2)}\) (c) \((\pi / 3)+\sqrt{(3 / 2)}\) (d) \((2 \pi / 3)-(\sqrt{3} / 2)\)
\(\quad 12-1012:(\pi / 9) \int_{0}(\tan x+\tan 2 x+\tan 3 x+\tan x \cdot \tan 2 x \cdot \tan 3 x) d x\) is equal to....... (a) \((1 / 3) \log 2\) (b) \(\log ^{3} \sqrt{4}\) (c) \(3 \log 2\) (d) \(4 \log \sqrt{3}\)
The value of the integral \((1 / 2) \int_{0}\left[d x /\left\\{(1-x)^{(3 / 2)} \sqrt{(1+x)\\}]}\right.\right.\) is.... (a) 0 (b) \((1 / 2)\) (c) \(\sqrt{3}-1\) (d) 2
What do you think about this solution?
We value your feedback to improve our textbook solutions.