Chapter 12: Problem 1060
\(R \rightarrow R\) and satisfies \(f(2)=-1, f^{\prime}(2)=4\) If \(3 \int_{2}(3-x) f^{\prime \prime}(x) d x=7\), then \(f(3)\) is equal to \(\ldots \ldots\) (a) 2 (b) 4 (c) 8 (d) 10
Chapter 12: Problem 1060
\(R \rightarrow R\) and satisfies \(f(2)=-1, f^{\prime}(2)=4\) If \(3 \int_{2}(3-x) f^{\prime \prime}(x) d x=7\), then \(f(3)\) is equal to \(\ldots \ldots\) (a) 2 (b) 4 (c) 8 (d) 10
All the tools & learning materials you need for study success - in one app.
Get started for free\((\pi / 2) \int_{[(-\pi) / 2]} \sqrt{\left(\cos x-\cos ^{3} x\right) d x}\) is equal to....... (a) \(-(1 / 3)\) (b) \(-(1 / 4)\) (c) \(-(2 / 3) \quad\) (d) \(+(4 / 3)\)
The value of the integral \((\pi / 2)]_{0}\left[\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x)\right] d x\) is \(\ldots \ldots\) (c) \(\left(\pi^{2} / 4\right)\) (a) \((\pi / 4)\) (b) \(\pi\) (d) \(\left(\pi^{2} / 2\right)\)
The area enclosed between the curves \(y=\log _{e}(x+e)\) and the coordinate axes is...... (a) 1 (b) 4 (c) 2 (d) 3
\((\pi / 2) \int_{0} \sqrt{(\sec x+1) d x}\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 2)\) (d) \(\pi\)
\((\pi / 4) \int_{0}\left[(\sin 2 \theta) /\left(\cos ^{4} \theta+\sin ^{4} \theta\right)\right] \mathrm{d} \theta\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 8)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.