Chapter 12: Problem 1063
\((\pi / 2) \int_{-(3 \pi / 2)}\left[(x+\pi)^{3}+\cos ^{2}(x+3 \pi)\right] \mathrm{d} x\) is equal to..... (a) \(\left(\pi^{3} / 8\right)\) (b) \((\pi / 2)\) (c) \((\pi / 4)-1\) (d) \((\pi / 4)+1\)
Chapter 12: Problem 1063
\((\pi / 2) \int_{-(3 \pi / 2)}\left[(x+\pi)^{3}+\cos ^{2}(x+3 \pi)\right] \mathrm{d} x\) is equal to..... (a) \(\left(\pi^{3} / 8\right)\) (b) \((\pi / 2)\) (c) \((\pi / 4)-1\) (d) \((\pi / 4)+1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area of common region of the circle \(x^{2}+y^{2}=1\) and \((x-1)^{2}+y^{2}=1\) is given by (a) \((2 \pi / 3)+\sqrt{(3 / 2)}\) (b) \((\pi / 3)-\sqrt{(3 / 2)}\) (c) \((\pi / 3)+\sqrt{(3 / 2)}\) (d) \((2 \pi / 3)-(\sqrt{3} / 2)\)
\((\pi / 2) \int_{[(-\pi) / 2]} \sqrt{\left(\cos x-\cos ^{3} x\right) d x}\) is equal to....... (a) \(-(1 / 3)\) (b) \(-(1 / 4)\) (c) \(-(2 / 3) \quad\) (d) \(+(4 / 3)\)
The value of integral \({ }^{1} \int_{0}\left[1 /\left\\{1-\mathrm{x}+\sqrt{\left. \left.\left(2 \mathrm{x}-\mathrm{x}^{2}\right)\right\\}\right] \mathrm{d} \mathrm{x} \text { is...... }}\right.\right.\) (a) 1 (b) \((1 / 2)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
The area bounded by ellipse \(\left(x^{2} / 4\right)+\left(y^{2} / 9\right)=1\) and its auxiliary circle is....... (a) \(2 \pi\) (b) \(3 \pi\) (c) \(6 \pi\) (d) \(9 \pi\)
The value of the integral \(\left.{ }^{1} \int_{-1} \log \left[1 /\left\\{x+\sqrt{(} x^{2}+1\right)\right\\}\right] d x\) is \(\ldots \ldots\) (a) \(\log 2\) (b) 0 (c) \(\log 3\) (d) not possible
What do you think about this solution?
We value your feedback to improve our textbook solutions.