Chapter 12: Problem 1063
\((\pi / 2) \int_{-(3 \pi / 2)}\left[(x+\pi)^{3}+\cos ^{2}(x+3 \pi)\right] \mathrm{d} x\) is equal to..... (a) \(\left(\pi^{3} / 8\right)\) (b) \((\pi / 2)\) (c) \((\pi / 4)-1\) (d) \((\pi / 4)+1\)
Chapter 12: Problem 1063
\((\pi / 2) \int_{-(3 \pi / 2)}\left[(x+\pi)^{3}+\cos ^{2}(x+3 \pi)\right] \mathrm{d} x\) is equal to..... (a) \(\left(\pi^{3} / 8\right)\) (b) \((\pi / 2)\) (c) \((\pi / 4)-1\) (d) \((\pi / 4)+1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{f}\) is an even function and \({ }^{2} \int_{0} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{K}\) then \({ }^{1} \int_{-1}\left[\left(x^{2}-1\right) / x^{2}\right] f[x+(1 / x)] d x\) is equal to...... (a) 0 (b) \(2 \mathrm{~K}\) (c) \(\mathrm{K}\) (d) \(4 \mathrm{~K}\)
\(\pi \int_{0}[(\sin 100 \mathrm{x}) /(\sin \mathrm{x})] \mathrm{d} \mathrm{x}\) is equal to \(\ldots \ldots\) (a) 0 (b) \(\pi\) (c) \((\pi / 2)\) (d) \(2 \pi\)
The value of the integral \(\left.{ }^{1} \int_{-1} \log \left[1 /\left\\{x+\sqrt{(} x^{2}+1\right)\right\\}\right] d x\) is \(\ldots \ldots\) (a) \(\log 2\) (b) 0 (c) \(\log 3\) (d) not possible
The value of integral \(2 \int_{1}\left[d x /\left(x+x^{7}\right)\right]\) is...... (a) \((1 / 6) \log (64 / 65)\) (b) \((1 / 6) \log (128 / 65)\) (c) \((1 / 6) \log (32 / 65)\) (d) \(6 \log (64 / 65)\)
The value of integral \((\pi / 4) \int_{0}[2 /(\sec x+\operatorname{cosec} x+\tan x+\cot x)] d x\) is \(\ldots \ldots\) (a) 0 (b) \(1-(\pi / 4)\) (c) \((\pi / 4)+1\) (d) \((\pi / 2)+1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.