Chapter 12: Problem 1066
The value of the integral \((1 / 2) \int_{0}\left[d x /\left\\{(1-x)^{(3 / 2)} \sqrt{(1+x)\\}]}\right.\right.\) is.... (a) 0 (b) \((1 / 2)\) (c) \(\sqrt{3}-1\) (d) 2
Chapter 12: Problem 1066
The value of the integral \((1 / 2) \int_{0}\left[d x /\left\\{(1-x)^{(3 / 2)} \sqrt{(1+x)\\}]}\right.\right.\) is.... (a) 0 (b) \((1 / 2)\) (c) \(\sqrt{3}-1\) (d) 2
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area bounded by ellipse \(\left(x^{2} / 4\right)+\left(y^{2} / 9\right)=1\) and its auxiliary circle is....... (a) \(2 \pi\) (b) \(3 \pi\) (c) \(6 \pi\) (d) \(9 \pi\)
\((\pi / 2) \int_{(\pi / 4)} \sqrt{(1-\sin 2 x) d x}\) is equal to \(\ldots \ldots \ldots\) (a) \(\sqrt{2}+1\) (b) \(\sqrt{2}-1\) (c) \(1-\sqrt{2}\) (d) 0
The value of the integral \(\left.\left.{ }^{1} \int_{0} \log [\sqrt{(} 1-\mathrm{x})+\sqrt{(} 1+\mathrm{x}\right)\right] \mathrm{d} \mathrm{x}\) is \(\ldots \ldots\) (a) \((1 / 2)[\log (2)-(1 / 2)+(\pi / 4)]\) (b) \((1 / 2)[\log 2-1+(\pi / 2)]\) (c) \((1 / 3)[\log 4-1+(\pi / 4)]\) (d) \((1 / 4)[\log 3-1+(\pi / 2)]\)
\( \log 3 \int_{\log (1 / 3)} 2^{(\mathrm{x}) 2} \cdot \mathrm{x}^{3} \mathrm{~d} \mathrm{x}\) is equal to...... (a) 0 (b) \(\log 3\) (c) \(-\log 3\) (d) \(\log 2\)
\(\pi \int_{0}[(\sin 100 \mathrm{x}) /(\sin \mathrm{x})] \mathrm{d} \mathrm{x}\) is equal to \(\ldots \ldots\) (a) 0 (b) \(\pi\) (c) \((\pi / 2)\) (d) \(2 \pi\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.