Chapter 12: Problem 1066
The value of the integral \((1 / 2) \int_{0}\left[d x /\left\\{(1-x)^{(3 / 2)} \sqrt{(1+x)\\}]}\right.\right.\) is.... (a) 0 (b) \((1 / 2)\) (c) \(\sqrt{3}-1\) (d) 2
Chapter 12: Problem 1066
The value of the integral \((1 / 2) \int_{0}\left[d x /\left\\{(1-x)^{(3 / 2)} \sqrt{(1+x)\\}]}\right.\right.\) is.... (a) 0 (b) \((1 / 2)\) (c) \(\sqrt{3}-1\) (d) 2
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area enclosed between the curves \(y=\log _{e}(x+e)\) and the coordinate axes is...... (a) 1 (b) 4 (c) 2 (d) 3
The area bounded by the curves \(y=x^{2}\) and \(y=|x|\) is...... (a) 1 Sq. unit (b) 2 Sq. unit (c) \((1 / 3)\) Sq. unit (d) \((2 / 3)\) Sq. unit
The value of the integral \(\left.{ }^{1} \int_{-1} \log \left[1 /\left\\{x+\sqrt{(} x^{2}+1\right)\right\\}\right] d x\) is \(\ldots \ldots\) (a) \(\log 2\) (b) 0 (c) \(\log 3\) (d) not possible
If \(\mathrm{f}(\mathrm{x})\) is an odd periodic function with period \(\mathrm{P}\) then \(2 p+a \int_{2 p-a} f(x) d x\) is equal to \(\ldots \ldots\) (a) \(P\) (B) \(2 \mathrm{P}\) (C) \(4 \mathrm{P}\) (d) 0
If \(\mathrm{f}\) is an odd function the value of integral \(\mathrm{e} \int_{(1 / \mathrm{e})}(1 / \mathrm{x}) \mathrm{f}[\mathrm{x}-(1 / \mathrm{x})] \mathrm{d} \mathrm{x}\) is equal to...... (a) \(\mathrm{e}\) (b) \(\left[\left(e^{2}+1\right) / e\right]\) (c) \(\left[\left(e^{2}-1\right) / 2 e\right]\) (d) 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.