Chapter 12: Problem 1072
The value of integral \((\pi / 4) \int_{0}[2 /(\sec x+\operatorname{cosec} x+\tan x+\cot x)] d x\) is \(\ldots \ldots\) (a) 0 (b) \(1-(\pi / 4)\) (c) \((\pi / 4)+1\) (d) \((\pi / 2)+1\)
Chapter 12: Problem 1072
The value of integral \((\pi / 4) \int_{0}[2 /(\sec x+\operatorname{cosec} x+\tan x+\cot x)] d x\) is \(\ldots \ldots\) (a) 0 (b) \(1-(\pi / 4)\) (c) \((\pi / 4)+1\) (d) \((\pi / 2)+1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area bounded by the curves \(y=x^{2}\) and \(y=|x|\) is...... (a) 1 Sq. unit (b) 2 Sq. unit (c) \((1 / 3)\) Sq. unit (d) \((2 / 3)\) Sq. unit
The area enclosed by the curves \(x^{2}=y, y=x+2\) and \(x\) -axis is...... (a) \((3 / 2)\) (b) \((5 / 2)\) (c) \((5 / 6)\) (d) \((7 / 6)\)
The value of the integral \({ }^{1} \int_{0}\left(x^{5}+6 x^{4}+5 x^{3}+4 x^{2}+3 x+1\right) e^{x-1} d x\) is equal to...... (a) 5 (b) \(5 \mathrm{e}\) (c) \(5 \mathrm{e}^{2}\) (d) \(5 \mathrm{e}^{4}\)
The value of the integral \({ }^{1} \int_{0} 2^{2 \mathrm{x}} \cdot 3^{-\mathrm{x}} \mathrm{dx}\) is \(\ldots \ldots \ldots\) (a) \(\log _{\mathrm{e}}(64 / 27)\) (b) \(\log _{\mathrm{e}}(27 / 64)\) (c) \(\log _{(3 / 4)}\) e (d) \(\log _{(64 / 27)} \mathrm{e}\)
The area enclosed by the parabola \(x^{2}=4\) by and its latusrectum is \((4 / 3)\) then \(b>0\) is equal to....... (a) 2 (b) \(\sqrt{2}\) (c) 1 (d) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.