Chapter 12: Problem 1072
The value of integral \((\pi / 4) \int_{0}[2 /(\sec x+\operatorname{cosec} x+\tan x+\cot x)] d x\) is \(\ldots \ldots\) (a) 0 (b) \(1-(\pi / 4)\) (c) \((\pi / 4)+1\) (d) \((\pi / 2)+1\)
Chapter 12: Problem 1072
The value of integral \((\pi / 4) \int_{0}[2 /(\sec x+\operatorname{cosec} x+\tan x+\cot x)] d x\) is \(\ldots \ldots\) (a) 0 (b) \(1-(\pi / 4)\) (c) \((\pi / 4)+1\) (d) \((\pi / 2)+1\)
All the tools & learning materials you need for study success - in one app.
Get started for free\((\pi / 2) \int_{0} \sqrt{(\sec x+1) d x}\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 2)\) (d) \(\pi\)
If \(a<0
If \(f(x)=f(\pi+e-x)\) and \(\pi \int_{e} f(x) d x=[2 /(e+\pi)]\) then \(\pi \int_{e} x f(x) d x\) is equal to....... (a) \([(\pi+\mathrm{e}) / 2]\) (b) \([(\pi-e) / 2]\) (c) 1 (d) \(-1\)
The area of the region bounded by curves \(f(x)=\sin x\) \(g(x)=\cos x, x=(\pi / 4), x=(5 \pi / 4)\) is........ (a) 1 (b) 2 (c) \(\sqrt{2}\) (d) \(2 \sqrt{2}\)
If \(\mathrm{f}\) is an even function and \({ }^{2} \int_{0} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{K}\) then \({ }^{1} \int_{-1}\left[\left(x^{2}-1\right) / x^{2}\right] f[x+(1 / x)] d x\) is equal to...... (a) 0 (b) \(2 \mathrm{~K}\) (c) \(\mathrm{K}\) (d) \(4 \mathrm{~K}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.