Chapter 12: Problem 1078
Ratio of the area cut off by a parabola \(y^{2}=32 x\) and line \(x=8\) corresponding rectangle contained the area formed by above curves region is....... (a) \((3 / 2)\) (b) \((2 / 3)\) (c) \((1 / 3)\) (d) 3
Chapter 12: Problem 1078
Ratio of the area cut off by a parabola \(y^{2}=32 x\) and line \(x=8\) corresponding rectangle contained the area formed by above curves region is....... (a) \((3 / 2)\) (b) \((2 / 3)\) (c) \((1 / 3)\) (d) 3
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of the integral \(\left.\left.{ }^{1} \int_{0} \log [\sqrt{(} 1-\mathrm{x})+\sqrt{(} 1+\mathrm{x}\right)\right] \mathrm{d} \mathrm{x}\) is \(\ldots \ldots\) (a) \((1 / 2)[\log (2)-(1 / 2)+(\pi / 4)]\) (b) \((1 / 2)[\log 2-1+(\pi / 2)]\) (c) \((1 / 3)[\log 4-1+(\pi / 4)]\) (d) \((1 / 4)[\log 3-1+(\pi / 2)]\)
If \(f(x)=f(\pi+e-x)\) and \(\pi \int_{e} f(x) d x=[2 /(e+\pi)]\) then \(\pi \int_{e} x f(x) d x\) is equal to....... (a) \([(\pi+\mathrm{e}) / 2]\) (b) \([(\pi-e) / 2]\) (c) 1 (d) \(-1\)
\((\pi / 2) \int_{(\pi / 4)} \sqrt{(1-\sin 2 x) d x}\) is equal to \(\ldots \ldots \ldots\) (a) \(\sqrt{2}+1\) (b) \(\sqrt{2}-1\) (c) \(1-\sqrt{2}\) (d) 0
The value of \((\pi / 3) \int_{(\pi / 6)} \operatorname{cosec} 2 \theta \log \tan \theta \mathrm{d} \theta\) is...... (a) 0 (b) \(\sqrt{3}\) (c) \((1 / \sqrt{3})\) (d) 1
The value of the integral \({ }^{1} \int_{0} 2^{2 \mathrm{x}} \cdot 3^{-\mathrm{x}} \mathrm{dx}\) is \(\ldots \ldots \ldots\) (a) \(\log _{\mathrm{e}}(64 / 27)\) (b) \(\log _{\mathrm{e}}(27 / 64)\) (c) \(\log _{(3 / 4)}\) e (d) \(\log _{(64 / 27)} \mathrm{e}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.