Chapter 12: Problem 1078
Ratio of the area cut off by a parabola \(y^{2}=32 x\) and line \(x=8\) corresponding rectangle contained the area formed by above curves region is....... (a) \((3 / 2)\) (b) \((2 / 3)\) (c) \((1 / 3)\) (d) 3
Chapter 12: Problem 1078
Ratio of the area cut off by a parabola \(y^{2}=32 x\) and line \(x=8\) corresponding rectangle contained the area formed by above curves region is....... (a) \((3 / 2)\) (b) \((2 / 3)\) (c) \((1 / 3)\) (d) 3
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of the integral \({ }^{1} \int_{-1}\left(x^{2}+x\right)|x| d x\) is...... (a) 0 (b) \((1 / 2)\) (c) 1 (d) 2
The area enclosed by the curves \(x^{2}=y, y=x+2\) and \(x\) -axis is...... (a) \((3 / 2)\) (b) \((5 / 2)\) (c) \((5 / 6)\) (d) \((7 / 6)\)
\( \log 3 \int_{\log (1 / 3)} 2^{(\mathrm{x}) 2} \cdot \mathrm{x}^{3} \mathrm{~d} \mathrm{x}\) is equal to...... (a) 0 (b) \(\log 3\) (c) \(-\log 3\) (d) \(\log 2\)
\((\pi / 2) \int_{0} \sqrt{(\sec x+1) d x}\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 2)\) (d) \(\pi\)
\(\quad 12-1012:(\pi / 9) \int_{0}(\tan x+\tan 2 x+\tan 3 x+\tan x \cdot \tan 2 x \cdot \tan 3 x) d x\) is equal to....... (a) \((1 / 3) \log 2\) (b) \(\log ^{3} \sqrt{4}\) (c) \(3 \log 2\) (d) \(4 \log \sqrt{3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.