Chapter 12: Problem 1085
The area bounded by the curves \(|x|+|y| \geq 2\) and \(x^{2}+y^{2} \leq 4\) is...... (a) \(4 \pi-4\) (b) \(4 \pi-2\) (c) \(4(\pi-2)\) (d) \(4(\pi-1)\)
Chapter 12: Problem 1085
The area bounded by the curves \(|x|+|y| \geq 2\) and \(x^{2}+y^{2} \leq 4\) is...... (a) \(4 \pi-4\) (b) \(4 \pi-2\) (c) \(4(\pi-2)\) (d) \(4(\pi-1)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of the integral \((\pi / 2)]_{0}\left[\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x)\right] d x\) is \(\ldots \ldots\) (c) \(\left(\pi^{2} / 4\right)\) (a) \((\pi / 4)\) (b) \(\pi\) (d) \(\left(\pi^{2} / 2\right)\)
The area bounded by \(|x|-|y|=2\) is........ (a) 2 Sq. unit (b) 4 Sq. unit (c) 8 Sq. unit (d) \(16 \mathrm{Sq}\). unit
The value of the integral \(\pi \int_{-\pi}\left[\left(\cos ^{2} x\right) /\left(1+3^{x}\right)\right] d x\) is \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 2)\) (d) \(\pi\)
\((\pi / 4) \int_{0} \log (\cot 2 x)^{\sin 4 x} d x\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 8)\) (d) \((\pi / 2)\)
The value of the integral \({ }^{1} \int_{0} \log [(1 / x)-1] d x\) is..... (a) 1 (b) \((1 / 2)\) (c) 0 (d) 2
What do you think about this solution?
We value your feedback to improve our textbook solutions.