Chapter 12: Problem 1085
The area bounded by the curves \(|x|+|y| \geq 2\) and \(x^{2}+y^{2} \leq 4\) is...... (a) \(4 \pi-4\) (b) \(4 \pi-2\) (c) \(4(\pi-2)\) (d) \(4(\pi-1)\)
Chapter 12: Problem 1085
The area bounded by the curves \(|x|+|y| \geq 2\) and \(x^{2}+y^{2} \leq 4\) is...... (a) \(4 \pi-4\) (b) \(4 \pi-2\) (c) \(4(\pi-2)\) (d) \(4(\pi-1)\)
All the tools & learning materials you need for study success - in one app.
Get started for free
The area bounded by \(|x|-|y|=2\) is........ (a) 2 Sq. unit (b) 4 Sq. unit (c) 8 Sq. unit (d) \(16 \mathrm{Sq}\). unit
The value of \((\pi / 3) \int_{(\pi / 6)} \operatorname{cosec} 2 \theta \log \tan \theta \mathrm{d} \theta\) is...... (a) 0 (b) \(\sqrt{3}\) (c) \((1 / \sqrt{3})\) (d) 1
The value of \((\pi / 4)\\}_{0}\left[\left(8 \tan ^{2} x+8 \tan x+8\right)\right.\) \(\left./\left(\tan ^{2} x+2 \tan x+1\right)\right] d x\) is \(\ldots \ldots\) (a) 0 (b) \(\pi\) (c) \(\pi+2\) (d) \(\pi-2\)
The value of the integral \(\left.{ }^{1} \int_{-1} \log \left[1 /\left\\{x+\sqrt{(} x^{2}+1\right)\right\\}\right] d x\) is \(\ldots \ldots\) (a) \(\log 2\) (b) 0 (c) \(\log 3\) (d) not possible
The area bounded by the curves \(y=x^{2}\) and \(y=|x|\) is...... (a) 1 Sq. unit (b) 2 Sq. unit (c) \((1 / 3)\) Sq. unit (d) \((2 / 3)\) Sq. unit
What do you think about this solution?
We value your feedback to improve our textbook solutions.