Chapter 12: Problem 1087
The area of the region bounded by curves \(f(x)=\sin x\) \(g(x)=\cos x, x=(\pi / 4), x=(5 \pi / 4)\) is........ (a) 1 (b) 2 (c) \(\sqrt{2}\) (d) \(2 \sqrt{2}\)
Chapter 12: Problem 1087
The area of the region bounded by curves \(f(x)=\sin x\) \(g(x)=\cos x, x=(\pi / 4), x=(5 \pi / 4)\) is........ (a) 1 (b) 2 (c) \(\sqrt{2}\) (d) \(2 \sqrt{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(f(x)=f(\pi+e-x)\) and \(\pi \int_{e} f(x) d x=[2 /(e+\pi)]\) then \(\pi \int_{e} x f(x) d x\) is equal to....... (a) \([(\pi+\mathrm{e}) / 2]\) (b) \([(\pi-e) / 2]\) (c) 1 (d) \(-1\)
The area bounded by \(|x|-|y|=2\) is........ (a) 2 Sq. unit (b) 4 Sq. unit (c) 8 Sq. unit (d) \(16 \mathrm{Sq}\). unit
\(1 \int_{0} 3 \sqrt{\left(x^{3}-x^{4}\right) d x}\) is equal to....... (a) \((1 / 2)\) (b) \((3 / 7)\) (c) \((9 / 28)\) (d) \((29 / 28)\)
If \(\mathrm{f}\) is an odd function the value of integral \(\mathrm{e} \int_{(1 / \mathrm{e})}(1 / \mathrm{x}) \mathrm{f}[\mathrm{x}-(1 / \mathrm{x})] \mathrm{d} \mathrm{x}\) is equal to...... (a) \(\mathrm{e}\) (b) \(\left[\left(e^{2}+1\right) / e\right]\) (c) \(\left[\left(e^{2}-1\right) / 2 e\right]\) (d) 0
The value of the integral \(100 \pi \int_{0} \sqrt{(1-\cos 2 \mathrm{x}) \mathrm{d} x \text { is...... }}\) (a) \(50 \pi\) (b) \(100 \pi\) (c) \(100 \sqrt{2}\) (d) \(200 \sqrt{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.