Chapter 12: Problem 1088
The area enclosed by the curves \(x^{2}=y, y=x+2\) and \(x\) -axis is...... (a) \((3 / 2)\) (b) \((5 / 2)\) (c) \((5 / 6)\) (d) \((7 / 6)\)
Chapter 12: Problem 1088
The area enclosed by the curves \(x^{2}=y, y=x+2\) and \(x\) -axis is...... (a) \((3 / 2)\) (b) \((5 / 2)\) (c) \((5 / 6)\) (d) \((7 / 6)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\((\pi / 2) \int_{0} \log [\tan (x / 2)+\cot (x / 2)] \mathrm{d} x\) is equal to \(\ldots \ldots\) (a) \((\pi / 2) \log 2\) (b) \(-(\pi / 2) \log 2\) (c) \(\pi \log 2\) (d) \(-\pi \log 2\)
If \(a<0
The area enclosed between the curves \(y=\log _{e}(x+e)\) and the coordinate axes is...... (a) 1 (b) 4 (c) 2 (d) 3
\( \quad a \int_{-a}[\\{(|x+a|) /(x+a)\\}+\\{(|x-a|) /(x-a)\\}] d x\) is equal to \(\ldots \ldots\) (where \(a>0)\) (a) 0 (b) a (c) \(2 \mathrm{a}\) (d) \(4 \mathrm{a}\)
\((\pi / 4) \int_{0}\left[(\sin 2 \theta) /\left(\cos ^{4} \theta+\sin ^{4} \theta\right)\right] \mathrm{d} \theta\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 8)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.