Chapter 12: Problem 1090
The area of the region bounded by curves \(x^{2}+y^{2}=4, x=1\) \(\& x=\sqrt{3}\) is..... (a) \((\pi / 3)\) sq. unit (b) \((2 \pi / 3)\) sq. unit (c) \((5 \pi / 6)\) sq. unit (d) \((4 \pi / 3)\) sq. unit
Chapter 12: Problem 1090
The area of the region bounded by curves \(x^{2}+y^{2}=4, x=1\) \(\& x=\sqrt{3}\) is..... (a) \((\pi / 3)\) sq. unit (b) \((2 \pi / 3)\) sq. unit (c) \((5 \pi / 6)\) sq. unit (d) \((4 \pi / 3)\) sq. unit
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area of common region of the circle \(x^{2}+y^{2}=1\) and \((x-1)^{2}+y^{2}=1\) is given by (a) \((2 \pi / 3)+\sqrt{(3 / 2)}\) (b) \((\pi / 3)-\sqrt{(3 / 2)}\) (c) \((\pi / 3)+\sqrt{(3 / 2)}\) (d) \((2 \pi / 3)-(\sqrt{3} / 2)\)
\((\pi / 2) \int_{0} \log [\tan (x / 2)+\cot (x / 2)] \mathrm{d} x\) is equal to \(\ldots \ldots\) (a) \((\pi / 2) \log 2\) (b) \(-(\pi / 2) \log 2\) (c) \(\pi \log 2\) (d) \(-\pi \log 2\)
\(\pi \int_{-\pi}\left[\\{2 x(1+\sin x)\\} /\left(1+\cos ^{2} x\right)\right] d x\) is equal to....... (a) 0 (b) (c) \(\left(\pi^{2} / 2\right)\) (d) \(\pi^{2}\)
The value of integral \(\pi \int_{0}[\\{\sin (2 n+1)(x / 2)\\} /\\{\sin (x / 2)\\}] d x\) is...... (a) 0 (b) \((\pi / 2)\) (c) \(\pi\) (d) \(2 \pi\)
The value of the integral \(\left.\left.{ }^{1} \int_{0} \log [\sqrt{(} 1-\mathrm{x})+\sqrt{(} 1+\mathrm{x}\right)\right] \mathrm{d} \mathrm{x}\) is \(\ldots \ldots\) (a) \((1 / 2)[\log (2)-(1 / 2)+(\pi / 4)]\) (b) \((1 / 2)[\log 2-1+(\pi / 2)]\) (c) \((1 / 3)[\log 4-1+(\pi / 4)]\) (d) \((1 / 4)[\log 3-1+(\pi / 2)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.