Chapter 12: Problem 1090
The area of the region bounded by curves \(x^{2}+y^{2}=4, x=1\) \(\& x=\sqrt{3}\) is..... (a) \((\pi / 3)\) sq. unit (b) \((2 \pi / 3)\) sq. unit (c) \((5 \pi / 6)\) sq. unit (d) \((4 \pi / 3)\) sq. unit
Chapter 12: Problem 1090
The area of the region bounded by curves \(x^{2}+y^{2}=4, x=1\) \(\& x=\sqrt{3}\) is..... (a) \((\pi / 3)\) sq. unit (b) \((2 \pi / 3)\) sq. unit (c) \((5 \pi / 6)\) sq. unit (d) \((4 \pi / 3)\) sq. unit
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area of the region bounded by the circle \(x^{2}+y^{2}=12\) and parabola \(x^{2}=y\) is \(\ldots \ldots \ldots\) (a) \((2 \pi-\sqrt{3})\) Sq. unit (b) \(4 \pi+\sqrt{3}\) Sq. unit (c) \(2 \pi+\sqrt{3}\) Sq. unit (d) \(\pi+(\sqrt{3} / 2)\) Sq. unit
If \(I_{n}=(\pi / 4) \int_{0} \tan ^{n} x d x\) then \({ }^{5} \sum_{r=1}\left[I /\left(I_{r}+I_{r+2}\right)\right]\) is equal to...... (a) 5 (b) 10 (c) 15 (d) 20
The value of the integral \({ }^{5} \int_{-5}(\mathrm{x}-[\mathrm{x}]) \mathrm{dx}\) is \(\ldots \ldots\) (a) 0 (b) 5 (c) 10 (d) 15
\((\pi / 2) \int_{-(3 \pi / 2)}\left[(x+\pi)^{3}+\cos ^{2}(x+3 \pi)\right] \mathrm{d} x\) is equal to..... (a) \(\left(\pi^{3} / 8\right)\) (b) \((\pi / 2)\) (c) \((\pi / 4)-1\) (d) \((\pi / 4)+1\)
\((\pi / 4) \int_{0}\left[(\sin 2 \theta) /\left(\cos ^{4} \theta+\sin ^{4} \theta\right)\right] \mathrm{d} \theta\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 8)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.