Chapter 13: Problem 1101
Order and degree of differential equation of all tangent lines to the parabola \(\mathrm{y}^{2}=4 \mathrm{ax}\) is (A) 2,2 (B) 3,1 (C) 1,2 (D) 4,1
Chapter 13: Problem 1101
Order and degree of differential equation of all tangent lines to the parabola \(\mathrm{y}^{2}=4 \mathrm{ax}\) is (A) 2,2 (B) 3,1 (C) 1,2 (D) 4,1
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(y=\left[x+\sqrt{ \left.\left(1+x^{2}\right)\right]^{n}}\right.\), then \(\left(1+x^{2}\right) \cdot\left(d^{2} y / d x^{2}\right)+x \cdot(d y / d x)\) - (A) - (B) \(2 \mathrm{x}^{2} \mathrm{y}\) (C) \(\mathrm{n}^{2} \mathrm{y}\) (D) \(-\mathrm{n}^{2} \mathrm{y}\)
The differential equation of all circles passing through the origin and having their centers on the y-axis is: OR The differential equation for the family of curves \(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{ay}=0\), where a is an arbitrary constant is: (A) \(\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \mathrm{y}^{1}=2 \mathrm{xy}\) (B) \(2\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \mathrm{y}^{1}=\mathrm{xy}\) (C) \(2\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \mathrm{y}^{1}=\mathrm{xy}\) (D) \(\left(x^{2}+y^{2}\right) y^{1}=2 x y\)
The solution of \(\mathrm{x}^{2} \mathrm{y}-\mathrm{x}^{3}(\mathrm{dy} / \mathrm{dx})=\mathrm{y}^{4} \cos \mathrm{x} ; \mathrm{y}(0)=1\) is: (A) \(x^{3}=y^{3} \sin x\) (B) \(x^{3}=3 y^{3} \sin x\) (C) \(y^{3}=3 x^{3} \sin x\) (D) none the these
The Integrating factor of the differential equation \(\left(1-\mathrm{y}^{2}\right)(\mathrm{dy} / \mathrm{dx})-\mathrm{yx}=1\) is: (A) \(\left[1 / \sqrt{ \left.\left(1-\mathrm{y}^{2}\right)\right]}\right.\) (B) \(\sqrt{\left(1-\mathrm{y}^{2}\right)}\) (C) \(\left[1 /\left(1-\mathrm{y}^{2}\right)\right]\) (D) \(1-\mathrm{y}^{2}\)
The particular solution of \(\left(1+\mathrm{y}^{2}\right) \mathrm{dx}+\left(\mathrm{x}-\mathrm{e}^{-(\tan )-1 \mathrm{y}}\right) \mathrm{dy}=0\) with initial condition \(\mathrm{y}(0)=0\) is: (A) \(x \cdot e^{(\tan )-1 x}=\cot ^{-1} x\) (B) \(x \cdot e^{(\tan )-1 y}=\tan ^{-1} y\) (C) \(x \cdot e^{(\tan )-1 y}=\cot ^{-1} y\) (D) \(x \cdot e^{(\cot )-1 y}=\tan ^{-1} y\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.