Chapter 13: Problem 1101
Order and degree of differential equation of all tangent lines to the parabola \(\mathrm{y}^{2}=4 \mathrm{ax}\) is (A) 2,2 (B) 3,1 (C) 1,2 (D) 4,1
Chapter 13: Problem 1101
Order and degree of differential equation of all tangent lines to the parabola \(\mathrm{y}^{2}=4 \mathrm{ax}\) is (A) 2,2 (B) 3,1 (C) 1,2 (D) 4,1
All the tools & learning materials you need for study success - in one app.
Get started for freeThe differential equation of all circles passing through the origin and having their centers on the \(\mathrm{x}\) -axis is: (A) \(y^{2}=x^{2}+2 x y(d y / d x)\) (B) \(y^{2}=x^{2}-2 x y(d y / d x)\) (C) \(x^{2}=y^{2}+x y(d y / d x)\) (D) \(x^{2}=y^{2}+3 x y(d y / d x)\)
If the slope of tangent at \((\mathrm{x}, \mathrm{y})\) to the curve passing through \((2,1)\) is \(\left[\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) /(2 \mathrm{xy})\right]\). The equation of the curve is: (A) \(2\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)=6 \mathrm{y}\) (B) \(2\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)=3 \mathrm{x}\) (C) \(x\left(x^{2}+y^{2}\right)=10\) (D) \(x\left(x^{2}-y^{2}\right)=6\)
The differential equation of the family of circles with fixed radius 5 units and centers on the line \(\mathrm{y}=2\) is: (A) \((\mathrm{y}-2)^{2}(\mathrm{dy} / \mathrm{dx})^{2}=25-(\mathrm{y}-2)^{2}\) (B) \((\mathrm{y}-2)(\mathrm{dy} / \mathrm{dx})^{2}=25-(\mathrm{y}-2)^{2}\) (C) \((x-2)(d y / d x)^{2}=25-(y-2)^{2}\) (D) \((\mathrm{x}-2)^{2}(\mathrm{dy} / \mathrm{dx})^{2}=25-(\mathrm{y}-2)^{2}\)
The differential equation of family of hyperbolas with asymptotes \(\mathrm{x}+\mathrm{y}=1\) and \(\mathrm{x}-\mathrm{y}=1\) is: (A) \(\mathrm{yy}_{1}=\mathrm{x}-1\) (B) \(\mathrm{yy}_{1}+\mathrm{x}=0\) (C) \(\mathrm{yy}_{2}=\mathrm{y}_{1}\) (D) \(\mathrm{y}_{1}+\mathrm{xy}=0\)
Let \(\mathrm{m}\) and \(\mathrm{n}\) be respectively the degree and order of the differential equation of whose solution is \(\mathrm{y}=\mathrm{cx}+\mathrm{c}^{2}-3 \mathrm{c}^{(3 / 2)}+2\) where \(\mathrm{c}\) is parameter is (A) \(\mathrm{m}=1, \mathrm{n}=4\) (B) \(\mathrm{m}=1, \mathrm{n}=4\) (C) \(\mathrm{m}=2, \mathrm{n}=2\) (D) \(\mathrm{m}=4, \mathrm{n}=1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.