Chapter 13: Problem 1102
The order of differential equation of all parabola with it's axis paralled to \(\mathrm{y}\) -axis and touch \(\mathrm{x}\) -axis is. (A) 2 (B) 3 (C) 1 (D) none of these
Chapter 13: Problem 1102
The order of differential equation of all parabola with it's axis paralled to \(\mathrm{y}\) -axis and touch \(\mathrm{x}\) -axis is. (A) 2 (B) 3 (C) 1 (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the general solution of \((\mathrm{dy} / \mathrm{dx})=(\mathrm{y} / \mathrm{x})+\mathrm{f}(\mathrm{x} / \mathrm{y})\) is \(\mathrm{y}\) \(=[\mathrm{x} / \log |\mathrm{cx}|]\), then \(\mathrm{f}(\mathrm{x} / \mathrm{y})\) is given by: (A) \(\left(\mathrm{x}^{2} / \mathrm{y}^{2}\right)\) (B) \(\left(\mathrm{y}^{2} / \mathrm{x}^{2}\right)\) (C) \(\left[\left(-\mathrm{x}^{2}\right) / \mathrm{y}^{2}\right]\) (D) \(\left[\left(-\mathrm{y}^{2}\right) / \mathrm{x}^{2}\right]\)
The differential equation of all conics having centre at the origin is of order. (A) 2 (B) 3 (C) 4 (D) 5
The differential equation whose solution is \(\mathrm{Ax}^{2}+\mathrm{By}^{2}=1\), where \(\mathrm{A}\) and \(\mathrm{B}\) are arbitrary constants is of. (A) second order and second degree (B) first order and first degree (C) first order and second degree (D) second order and first degree
The solution of \(\mathrm{x}^{3}(\mathrm{dy} / \mathrm{dx})+4 \mathrm{x}^{2} \cdot \tan \mathrm{y}=\mathrm{e}^{\mathrm{x}} \cdot \mathrm{sec} \mathrm{y}\) satisfying \(\mathrm{y}(1)=0\) is: (A) \(\sin \mathrm{y}=\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1) \mathrm{x}^{-4}\) (B) \(\tan \mathrm{y}=(\mathrm{x}-1) \mathrm{e}^{\mathrm{x}} \cdot \mathrm{x}^{-3}\) (C) \(\sin \mathrm{y}=\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1) \mathrm{x}^{-3}\) (D) \(\tan \mathrm{y}=(\mathrm{x}-2) \mathrm{e}^{\mathrm{x}} \cdot \log \mathrm{x}\)
If \(y=\left[x+\sqrt{ \left.\left(1+x^{2}\right)\right]^{n}}\right.\), then \(\left(1+x^{2}\right) \cdot\left(d^{2} y / d x^{2}\right)+x \cdot(d y / d x)\) - (A) - (B) \(2 \mathrm{x}^{2} \mathrm{y}\) (C) \(\mathrm{n}^{2} \mathrm{y}\) (D) \(-\mathrm{n}^{2} \mathrm{y}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.