Chapter 13: Problem 1104
The differential equation of all conics having centre at the origin is of order. (A) 2 (B) 3 (C) 4 (D) 5
Chapter 13: Problem 1104
The differential equation of all conics having centre at the origin is of order. (A) 2 (B) 3 (C) 4 (D) 5
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{m}\) and \(\mathrm{n}\) be respectively the degree and order of the differential equation of whose solution is \(\mathrm{y}=\mathrm{cx}+\mathrm{c}^{2}-3 \mathrm{c}^{(3 / 2)}+2\) where \(\mathrm{c}\) is parameter is (A) \(\mathrm{m}=1, \mathrm{n}=4\) (B) \(\mathrm{m}=1, \mathrm{n}=4\) (C) \(\mathrm{m}=2, \mathrm{n}=2\) (D) \(\mathrm{m}=4, \mathrm{n}=1\)
The solution of initial value problem \(\mathrm{x}(\mathrm{dy} / \mathrm{dx})=\mathrm{x}+\mathrm{y} ; \mathrm{y}(1)\) \(=1\) is \(\mathrm{y}=\) (A) \(x \log \overline{x-1}\) (B) \(x \log x+1\) (C) \(x(\log x+1)\) (D) none of these
If \((\mathrm{dy} / \mathrm{dx})=\mathrm{y}+3>0\) and \(\mathrm{y}(0)=2\), then \(\mathrm{y}(\log 2)\) is equal to. \(\begin{array}{ll}\text { (A) }-2 & \text { (B) } 5\end{array}\) (C) 7 (D) 13
The differential equation of the family of circles with fixed radius 5 units and centers on the line \(\mathrm{y}=2\) is: (A) \((\mathrm{y}-2)^{2}(\mathrm{dy} / \mathrm{dx})^{2}=25-(\mathrm{y}-2)^{2}\) (B) \((\mathrm{y}-2)(\mathrm{dy} / \mathrm{dx})^{2}=25-(\mathrm{y}-2)^{2}\) (C) \((x-2)(d y / d x)^{2}=25-(y-2)^{2}\) (D) \((\mathrm{x}-2)^{2}(\mathrm{dy} / \mathrm{dx})^{2}=25-(\mathrm{y}-2)^{2}\)
The solution of the equation \((2 x+y+1) d x+(4 x+2 y-1) d y\) \(=0\) is: (A) \(\log |2 \mathrm{x}+\mathrm{y}-1|+\mathrm{x}+2 \mathrm{y}=\mathrm{c}\) (B) \(\log (2 \mathrm{x}+\mathrm{y}+1)+\mathrm{x}+2 \mathrm{y}=\mathrm{c}\) (C) \(\log |2 \mathrm{x}+\mathrm{y}-1|=\mathrm{c}+\mathrm{x}+\mathrm{y}\) (D) \(\log (4 x+2 y-1)=c+2 x+y\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.