Chapter 13: Problem 1105
The order of the differential equation of family of circle touching a fixed straight line passing through origin is. (A) 2 (B) 3 (C) 4 (D) none of these
Chapter 13: Problem 1105
The order of the differential equation of family of circle touching a fixed straight line passing through origin is. (A) 2 (B) 3 (C) 4 (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe differential equation of all circles passing through the origin and having their centers on the y-axis is: OR The differential equation for the family of curves \(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{ay}=0\), where a is an arbitrary constant is: (A) \(\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \mathrm{y}^{1}=2 \mathrm{xy}\) (B) \(2\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \mathrm{y}^{1}=\mathrm{xy}\) (C) \(2\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \mathrm{y}^{1}=\mathrm{xy}\) (D) \(\left(x^{2}+y^{2}\right) y^{1}=2 x y\)
The differential equation representing the family of curves \(\mathrm{y}^{2}=2 \mathrm{c}(\mathrm{x}+\mathrm{v} \mathrm{c})\), where \(\mathrm{c}\) is a positive parameter, is of order and degree as follows. (A) order 2, degree 1 (B) order 1 , degree 2 (C) order 2 , degree 2 (D) order 1 , degree 3
Solution of \(\left(d^{2} y / d x^{2}\right)=\log x\) is: (A) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}-(3 / 4) \mathrm{x}^{2}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (B) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}+(3 / 4) \mathrm{x}^{2}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (C) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}-(3 / 4) \mathrm{x}^{2}-\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (D) None of these
The solution of the equation \((2 x+y+1) d x+(4 x+2 y-1) d y\) \(=0\) is: (A) \(\log |2 \mathrm{x}+\mathrm{y}-1|+\mathrm{x}+2 \mathrm{y}=\mathrm{c}\) (B) \(\log (2 \mathrm{x}+\mathrm{y}+1)+\mathrm{x}+2 \mathrm{y}=\mathrm{c}\) (C) \(\log |2 \mathrm{x}+\mathrm{y}-1|=\mathrm{c}+\mathrm{x}+\mathrm{y}\) (D) \(\log (4 x+2 y-1)=c+2 x+y\)
Solution of differential equation \((\mathrm{dy} / \mathrm{dx})+\mathrm{ay}=\mathrm{e}^{\mathrm{mx}}\) is: (A) \(y=e^{m x}+c \cdot e^{-a x}\) (B) \((\mathrm{a}+\mathrm{m}) \mathrm{y}=\mathrm{e}^{\mathrm{mx}}+\mathrm{c}\) (C) \((a+m) y=e^{m x}+c \cdot e^{-a x}\) (D) \(\mathrm{y} \cdot \mathrm{e}^{\mathrm{ax}}=\mathrm{m} \cdot \mathrm{e}^{\mathrm{mx}}+\mathrm{c}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.