Chapter 13: Problem 1105
The order of the differential equation of family of circle touching a fixed straight line passing through origin is. (A) 2 (B) 3 (C) 4 (D) none of these
Chapter 13: Problem 1105
The order of the differential equation of family of circle touching a fixed straight line passing through origin is. (A) 2 (B) 3 (C) 4 (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe solution of \((\mathrm{dy} / \mathrm{dx})=4 \mathrm{x}+\mathrm{y}+1 \mathrm{is}:\) (A) \(4 \mathrm{x}+\mathrm{y}+1=\mathrm{c} \cdot \mathrm{e}^{\mathrm{x}}\) (B) \(4 \mathrm{x}+\mathrm{y}+5=\mathrm{e}^{\mathrm{x}}+\mathrm{c}\) (C) \(4 \mathrm{x}+\mathrm{y}+5=\mathrm{c} \cdot \mathrm{e}^{\mathrm{x}}\) (D) none of these
Solution of \((\mathrm{dy} / \mathrm{dx})=1+\mathrm{x}+\mathrm{y}^{2}+\mathrm{xy}^{2}, \mathrm{y}(0)=0\) is: (A) \(y=\tan \left(c+x+x^{2}\right)\) (B) \(\mathrm{y}=\tan \left[\mathrm{x}+\left(\mathrm{x}^{2} / 2\right)\right]\) (C) \(\mathrm{y}^{2}=\exp \left[\mathrm{x}+\left(\mathrm{x}^{2} / 2\right)\right]\) (D) \(\mathrm{y}^{2}=1+\mathrm{c} \cdot \exp \left[\mathrm{x}+\left(\mathrm{x}^{2} / 2\right)\right]\)
Solution of differential equation : \(d y-\sin x \cdot \sin y d x=0\) is: (A) \(e^{\cos x} \cdot \tan (x / 2)=c\) (B) \(\cos x \cdot \tan y=c\) (C) \(\mathrm{e}^{\cos \mathrm{x}} \cdot \tan \mathrm{y}=\mathrm{c}\) (D) \(\cos x \cdot \sin y=c\)
The differential equation of family of circles of radius 'a' is: (A) \(a^{2} y_{2}=\left[1-y_{1}^{3}\right]^{2}\) (B) \(a^{2} y_{2}=\left[1-y_{1}^{2}\right]^{3}\) (C) \(a^{2}\left(y_{2}\right)^{2}=\left[1+y_{1}^{3}\right]^{2}\) (D) \(a^{2}\left(y_{2}\right)^{2}=\left[1+y_{1}^{2}\right]^{3}\)
The solution of \(\mathrm{xdy}-\mathrm{ydx}=0\) represents: (A) parabola having vertex at \((0,0)\) (B) circle having centre at \((0,0)\) (C) a straight line passing through \((0,0)\) (D) a rectangular hyperbola
What do you think about this solution?
We value your feedback to improve our textbook solutions.