Chapter 13: Problem 1108
Integrating factor of differential equation \([1 /(\cos x)] \cdot(d y / d x)+[1 /(\sin x)] y=1\) is. (A) \(\sec x\) (B) \(\cos \mathrm{x}\) (C) \(\tan \mathrm{x}\) (D) \(\sin \mathrm{x}\)
Chapter 13: Problem 1108
Integrating factor of differential equation \([1 /(\cos x)] \cdot(d y / d x)+[1 /(\sin x)] y=1\) is. (A) \(\sec x\) (B) \(\cos \mathrm{x}\) (C) \(\tan \mathrm{x}\) (D) \(\sin \mathrm{x}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe general solution of the equation \((d y / d x)=\left(x^{2} / y^{2}\right)\) is: (A) \(x^{3}+y^{3}=c\) (B) \(x^{3}-y^{3}=c\) (C) \(x^{2}+y^{2}=c\) (D) \(x^{2}-y^{2}=c\)
The slope of the tangent at \((x, y)\) to a curve passing through \([1,(\pi / 4)]\) is given by \((\mathrm{y} / \mathrm{x})-\cos ^{2}(\mathrm{y} / \mathrm{x})\), then the equation of the curve is: (A) \(y=\tan ^{-1}[\log (\mathrm{e} / \mathrm{x})]\) (B) \(\mathrm{y}=\mathrm{x} \cdot \tan ^{-1}[\log (\mathrm{e} / \mathrm{x})]\) (C) \(\mathrm{y}=\mathrm{xtan}^{-1}(\mathrm{x} / \mathrm{e})\) (D) none of these
If \((\mathrm{dy} / \mathrm{dx})=\mathrm{y}+3>0\) and \(\mathrm{y}(0)=2\), then \(\mathrm{y}(\log 2)\) is equal to. \(\begin{array}{ll}\text { (A) }-2 & \text { (B) } 5\end{array}\) (C) 7 (D) 13
Let \(\mathrm{m}\) and \(\mathrm{n}\) be respectively the degree and order of the differential equation of whose solution is \(\mathrm{y}=\mathrm{cx}+\mathrm{c}^{2}-3 \mathrm{c}^{(3 / 2)}+2\) where \(\mathrm{c}\) is parameter is (A) \(\mathrm{m}=1, \mathrm{n}=4\) (B) \(\mathrm{m}=1, \mathrm{n}=4\) (C) \(\mathrm{m}=2, \mathrm{n}=2\) (D) \(\mathrm{m}=4, \mathrm{n}=1\)
The solution of the differential equation \(\mathrm{ydx}+\left(\mathrm{x}+\mathrm{x}^{2} \mathrm{y}\right) \mathrm{dy}=0\) is: (A) \((1 / \mathrm{xy})+\log \mathrm{y}=\mathrm{c}\) (B) \(-(1 / x y)+\log y=c\) (C) \(-(1 / \mathrm{xy})=\mathrm{c}\) (D) \(\log \mathrm{y}=\mathrm{cx}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.