Chapter 13: Problem 1108
Integrating factor of differential equation \([1 /(\cos x)] \cdot(d y / d x)+[1 /(\sin x)] y=1\) is. (A) \(\sec x\) (B) \(\cos \mathrm{x}\) (C) \(\tan \mathrm{x}\) (D) \(\sin \mathrm{x}\)
Chapter 13: Problem 1108
Integrating factor of differential equation \([1 /(\cos x)] \cdot(d y / d x)+[1 /(\sin x)] y=1\) is. (A) \(\sec x\) (B) \(\cos \mathrm{x}\) (C) \(\tan \mathrm{x}\) (D) \(\sin \mathrm{x}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe order and degree of the differential equation \(\mathrm{y}^{2}=\left[\left\\{1+(\mathrm{dy} / \mathrm{d} \mathrm{x})^{2}\right\\}^{(3 / 2)} /\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)\right]\) are (respectively) (A) 2,1 (B) 2,2 (C) 2,3 (D) 2,6
Solution of \(\left(d^{2} y / d x^{2}\right)=\log x\) is: (A) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}-(3 / 4) \mathrm{x}^{2}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (B) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}+(3 / 4) \mathrm{x}^{2}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (C) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}-(3 / 4) \mathrm{x}^{2}-\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (D) None of these
Solution of \((\mathrm{y} / \mathrm{x}) \cos (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})-(\mathrm{y} / \mathrm{x})]\) \(+\sin (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})+(\mathrm{y} / \mathrm{x})]=0 ; \mathrm{y}(1)=(\pi / 2)\) is: (A) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 2 \mathrm{x})\) (B) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / \mathrm{x})\) (C) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 3 \mathrm{x})\) (D) none of these
The equation of the curve passing through \([1,(\pi / 4)]\) and having the slope \([(\sin 2 \mathrm{y}) /(\mathrm{x}+\tan \mathrm{y})]\) at \((\mathrm{x}, \mathrm{y})\) is: (A) \(x=\tan y\) (B) \(\mathrm{y}=2 \tan \mathrm{x}\) (C) \(y=\tan x\) (D) \(x=2 \tan y\)
The differential equation of family of curves \(\mathrm{y}=\mathrm{Ax}+(\mathrm{B} / \mathrm{x})\) is: (A) \(\left.\mathrm{y}\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)+\mathrm{x}^{2} \mathrm{dy} / \mathrm{dx}\right)-\mathrm{y}=0\) (B) \(y\left(d^{2} y / d x^{2}\right)+x^{2}(d y / d x)+y=0\) (C) \(x^{2}\left(d^{2} y / d x^{2}\right)+x(d y / d x)-y=0\) (D) \(x^{2}\left(d^{2} y / d x^{2}\right)+x(d y / d x)+y=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.