Integrating factor of differential equation \([1 /(\cos x)] \cdot(d y / d x)+[1 /(\sin x)] y=1\) is. (A) \(\sec x\) (B) \(\cos \mathrm{x}\) (C) \(\tan \mathrm{x}\) (D) \(\sin \mathrm{x}\)

Short Answer

Expert verified
The integrating factor of the given differential equation is \(\tan x\) (C).

Step by step solution

01

Identify P(x) and Q(x)

Given the differential equation \(\frac{1}{\cos x} \frac{dy}{dx} + \frac{1}{\sin x}y = 1\), we can see that it is in the form of a first-order linear differential equation with P(x) = \(\frac{1}{\sin x}\) and Q(x) = 1.
02

Find the integrating factor

As mentioned earlier, the integrating factor is given by the formula \(e^{\int P(x)dx}\). Let's find \(\int P(x)dx\): \[\int P(x)dx = \int \frac{1}{\sin x} dx\] Let's make a substitution: \(u = \sin x, du = \cos x dx\) \[\int \frac{1}{u} \cdot \frac{du}{\cos x} = \frac{1}{\cos x}\int \frac{1}{u} du\] Now let's integrate: \[ \frac{1}{\cos x}\int \frac{1}{u} du = \frac{ln|u|+c}{\cos x} = \frac{ln|\sin x| + c}{\cos x}\] Now, let's find the integrating factor: \[e^{\int P(x)dx} = e^{\frac{ln|\sin x| + c}{\cos x}}\] But we know that \(e^{\ln z} = z\), so: \[e^{\int P(x)dx} = \frac{e^{ln|\sin x|+c}}{\cos x} = \frac{\sin x}{\cos x}\] Thus, the integrating factor is \(\tan x\), which corresponds to the answer choice (C).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The order and degree of the differential equation \(\mathrm{y}^{2}=\left[\left\\{1+(\mathrm{dy} / \mathrm{d} \mathrm{x})^{2}\right\\}^{(3 / 2)} /\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)\right]\) are (respectively) (A) 2,1 (B) 2,2 (C) 2,3 (D) 2,6

Solution of \(\left(d^{2} y / d x^{2}\right)=\log x\) is: (A) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}-(3 / 4) \mathrm{x}^{2}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (B) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}+(3 / 4) \mathrm{x}^{2}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (C) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}-(3 / 4) \mathrm{x}^{2}-\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (D) None of these

Solution of \((\mathrm{y} / \mathrm{x}) \cos (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})-(\mathrm{y} / \mathrm{x})]\) \(+\sin (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})+(\mathrm{y} / \mathrm{x})]=0 ; \mathrm{y}(1)=(\pi / 2)\) is: (A) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 2 \mathrm{x})\) (B) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / \mathrm{x})\) (C) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 3 \mathrm{x})\) (D) none of these

The equation of the curve passing through \([1,(\pi / 4)]\) and having the slope \([(\sin 2 \mathrm{y}) /(\mathrm{x}+\tan \mathrm{y})]\) at \((\mathrm{x}, \mathrm{y})\) is: (A) \(x=\tan y\) (B) \(\mathrm{y}=2 \tan \mathrm{x}\) (C) \(y=\tan x\) (D) \(x=2 \tan y\)

The differential equation of family of curves \(\mathrm{y}=\mathrm{Ax}+(\mathrm{B} / \mathrm{x})\) is: (A) \(\left.\mathrm{y}\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)+\mathrm{x}^{2} \mathrm{dy} / \mathrm{dx}\right)-\mathrm{y}=0\) (B) \(y\left(d^{2} y / d x^{2}\right)+x^{2}(d y / d x)+y=0\) (C) \(x^{2}\left(d^{2} y / d x^{2}\right)+x(d y / d x)-y=0\) (D) \(x^{2}\left(d^{2} y / d x^{2}\right)+x(d y / d x)+y=0\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free