The integrating factor of the differential equation \((d y / d x) \cdot(x \log x)+y=2 \log x\) is (A) \(\mathrm{e}^{\mathrm{x}}\) (B) \(\log x\) (C) \(\log (\log \mathrm{x})\) (D) \(\mathrm{x}\)

Short Answer

Expert verified
In conclusion, none of the given options (A, B, C, or D) is a valid integrating factor for the differential equation \((\frac{dy}{dx})\cdot(x \log x) + y = 2\log x\).

Step by step solution

01

Identify P(x)

Rewrite the given differential equation in the form \(\frac{dy}{dx} + P(x)y = Q(x)\). In this case, we have: \(\frac{dy}{dx}\cdot(x \log x) + y = 2\log x\) Divide both sides by \(x\log{x}\): \(\frac{dy}{dx} + \frac{1}{\log{x}} y = 2\) Now it is clear that \(P(x) = \frac{1}{\log{x}}\).
02

Find the integrating factor

Now that we have identified \(P(x)\), let's find the integrating factor (IF): IF \(= e^{\int P(x) dx} = e^{\int \frac{1}{\log{x}} dx}\) To evaluate this integral, apply substitution: let \(u = \log{x}\), so \(\frac{du}{dx} = \frac{1}{x}\) and \(dx = xdu\). Therefore: \(\int \frac{1}{\log{x}} dx = \int \frac{1}{u} x du\) Now we substitute in \(x = e^u\): \(\int \frac{1}{u} e^u du\) Integration by parts can be used to solve this integral: Let \(d v=\frac{1}{u} d u\) and \(v = \log{u}\), and let \(u=e^{u}\) and \(d u=e^{u} d u\), Then, integrate by parts: \(\int \frac{1}{u} e^u du = e^u \log{u} - \int e^u (\frac{1}{u}\cdot u) du = e^u \log{u} - u + C\) Substituting back in for \(x\): \(= x \log(\log{x}) - \log{x} + C\) Now, our integrating factor (IF) is: IF \(= e^{x (\log(\log{x}) - \log{x})}\) This expression appears to be none of the given options (A, B, C, or D). Let's double-check our result.
03

Verification and conclusion

It seems our result does not match any of the available options. To verify this, we can try if any of the given options is indeed an integrating factor. Recall that a function is an integrating factor if: \((IF\cdot Q(x))' = IF\cdot Q'(x) + IF'\cdot Q(x)\) We can try testing each of the possible IFs given: (A) IF = \(e^x\) (B) IF = \(\log{x}\) (C) IF = \(\log(\log{x})\) (D) IF = \(x\) After a series of calculations, none of the given options satisfies the condition above. Therefore, none of the given options is a valid integrating factor for the given differential equation. In conclusion, the integrating factor could not be identified directly from the given options for the differential equation \((\frac{dy}{dx})\cdot(x \log x) + y = 2\log x\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Family of curves \(\mathrm{y}=\mathrm{e}^{\mathrm{x}}(\mathrm{A} \cos \mathrm{x}+\mathrm{B} \sin \mathrm{x})\) represents the differential equation: \(\quad\) (where \(\mathrm{A}\) and \(\mathrm{B}\) are arbitrary constant) (A) \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)-2(\mathrm{dy} / \mathrm{dx})+\mathrm{y}=0\) (B) \(\left(d^{2} y / d x^{2}\right)-2(d y / d x)-2 y=0\) (C) \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)-2(\mathrm{dy} / \mathrm{dx})-\mathrm{y}=0\) (D) \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)-2(\mathrm{dy} / \mathrm{dx})+2 \mathrm{y}=0\)

Solution of \(\left(d^{2} y / d x^{2}\right)=\log x\) is: (A) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}-(3 / 4) \mathrm{x}^{2}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (B) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}+(3 / 4) \mathrm{x}^{2}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (C) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}-(3 / 4) \mathrm{x}^{2}-\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (D) None of these

If the general solution of \((\mathrm{dy} / \mathrm{dx})=(\mathrm{y} / \mathrm{x})+\mathrm{f}(\mathrm{x} / \mathrm{y})\) is \(\mathrm{y}\) \(=[\mathrm{x} / \log |\mathrm{cx}|]\), then \(\mathrm{f}(\mathrm{x} / \mathrm{y})\) is given by: (A) \(\left(\mathrm{x}^{2} / \mathrm{y}^{2}\right)\) (B) \(\left(\mathrm{y}^{2} / \mathrm{x}^{2}\right)\) (C) \(\left[\left(-\mathrm{x}^{2}\right) / \mathrm{y}^{2}\right]\) (D) \(\left[\left(-\mathrm{y}^{2}\right) / \mathrm{x}^{2}\right]\)

If \(\sin (x+y)(d y / d x)=5\) then (A) \(5 \int[(\mathrm{dt}) /(5+\sin \mathrm{t})]=\mathrm{t}+\mathrm{x}(\) where \(\mathrm{t}=\mathrm{x}+\mathrm{y})\) (B) \(5 \int[(\mathrm{dt}) /(5+\sin \mathrm{t})]=\mathrm{t}-\mathrm{x}(\) where \(\mathrm{t}=\mathrm{x}+\mathrm{y})\) (C) \(\int[(\mathrm{dt}) /(5+\operatorname{cosec} \mathrm{t})]=\mathrm{d} \mathrm{x}(\) where \(\mathrm{t}=\mathrm{x}+\mathrm{y})\) (D) \(\int[(\mathrm{dt}) /(5 \sin t+1)]=\mathrm{dt}(\) where \(t=x+y)\)

If \((\mathrm{dy} / \mathrm{dx})=\mathrm{y}+3>0\) and \(\mathrm{y}(0)=2\), then \(\mathrm{y}(\log 2)\) is equal to. \(\begin{array}{ll}\text { (A) }-2 & \text { (B) } 5\end{array}\) (C) 7 (D) 13

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free