Chapter 13: Problem 1111
If \(\sin x\) is an Integrating factor of \((d y / d x)+p \cdot y=Q\) then \(p\) is: (A) \(\sin x\) (B) \(\log \sin x\) (C) \(\cot x\) (D) \(\log \cos x\)
Chapter 13: Problem 1111
If \(\sin x\) is an Integrating factor of \((d y / d x)+p \cdot y=Q\) then \(p\) is: (A) \(\sin x\) (B) \(\log \sin x\) (C) \(\cot x\) (D) \(\log \cos x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe order of the differential equation whose general solution is given by \(\mathrm{y}=\mathrm{C}_{1} \mathrm{e}^{(\mathrm{x}+\mathrm{C}) 2}+\left(\mathrm{C}_{3}+\mathrm{C}_{4}\right) \cdot \sin \left(\mathrm{x}+\mathrm{C}_{5}\right)\), where \(\mathrm{C}_{1}\), \(\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}\) are arbitrary Constant is (A) 5 (B) 4 (C) 3 (D) 2
Let \(\mathrm{m}\) and \(\mathrm{n}\) be respectively the degree and order of the differential equation of whose solution is \(\mathrm{y}=\mathrm{cx}+\mathrm{c}^{2}-3 \mathrm{c}^{(3 / 2)}+2\) where \(\mathrm{c}\) is parameter is (A) \(\mathrm{m}=1, \mathrm{n}=4\) (B) \(\mathrm{m}=1, \mathrm{n}=4\) (C) \(\mathrm{m}=2, \mathrm{n}=2\) (D) \(\mathrm{m}=4, \mathrm{n}=1\)
If \(\mathrm{f}(\mathrm{x})\) and \(\mathrm{g}(\mathrm{x})\) are two solutions of the differential equation \(\mathrm{q}\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)+\mathrm{x}^{2}(\mathrm{dy} / \mathrm{d} \mathrm{x})+\mathrm{y}=\mathrm{e}^{\mathrm{x}}\), then \(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})\) is the solution of: (A) \(\mathrm{q}\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)+\mathrm{y}=\mathrm{e}^{\mathrm{x}}\) (B) \(q^{2}\left(d^{2} y / d x^{2}\right)+(d y / d x)+y=e^{x}\) (C) \(q^{2}\left(d^{2} y / d x^{2}\right)+y=e^{x}\) (D) \(q\left(d^{2} y / d x^{2}\right)+x^{2}(d y / d x)+y=0\)
The solution of the equation \(\left(d^{2} y / d x^{2}\right)=e^{-2 x}\) is: \(y=\) (A) \((1 / 4) \mathrm{e}^{-2 \mathrm{x}}+\mathrm{cx}+\mathrm{d}\) (B) \((1 / 4) e^{-2 \mathrm{x}}\) (C) \((1 / 4) e^{-2 x}+c x^{2}+d\) (D) \((1 / 4) e^{-2 x}+c x+d\)
The differential equation whose solution is \(\mathrm{Ax}^{2}+\mathrm{By}^{2}=1\), where \(\mathrm{A}\) and \(\mathrm{B}\) are arbitrary constants is of. (A) second order and second degree (B) first order and first degree (C) first order and second degree (D) second order and first degree
What do you think about this solution?
We value your feedback to improve our textbook solutions.