Chapter 13: Problem 1111
If \(\sin x\) is an Integrating factor of \((d y / d x)+p \cdot y=Q\) then \(p\) is: (A) \(\sin x\) (B) \(\log \sin x\) (C) \(\cot x\) (D) \(\log \cos x\)
Chapter 13: Problem 1111
If \(\sin x\) is an Integrating factor of \((d y / d x)+p \cdot y=Q\) then \(p\) is: (A) \(\sin x\) (B) \(\log \sin x\) (C) \(\cot x\) (D) \(\log \cos x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe degree and order of the differential equation of the family of all parabolas whose axis is \(\mathrm{x}\) -axis, are respectively. (A) 1,2 (B) 3,2 (C) 2,3 (D) 2,1
The solution of \(\mathrm{xdy}-\mathrm{ydx}=0\) represents: (A) parabola having vertex at \((0,0)\) (B) circle having centre at \((0,0)\) (C) a straight line passing through \((0,0)\) (D) a rectangular hyperbola
The solution of the differential equation \(\mathrm{ydx}+\left(\mathrm{x}+\mathrm{x}^{2} \mathrm{y}\right) \mathrm{dy}=0\) is: (A) \((1 / \mathrm{xy})+\log \mathrm{y}=\mathrm{c}\) (B) \(-(1 / x y)+\log y=c\) (C) \(-(1 / \mathrm{xy})=\mathrm{c}\) (D) \(\log \mathrm{y}=\mathrm{cx}\)
The differential equation of all parabolas having the directrix parallel to \(\mathrm{x}\) -axis: (A) \(\left(\mathrm{d}^{3} \mathrm{x} / \mathrm{dy}^{3}\right)^{2}=0\) (B) \(\left(\mathrm{d}^{3} \mathrm{y} / \mathrm{dx}^{3}\right)=0\) (C) \(\left(\mathrm{d}^{3} \mathrm{y} / \mathrm{dx}^{3}\right)+\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)=0\) (D) \(\left(d^{2} y / d x^{2}\right)=0\)
If \(\mathrm{x}(\mathrm{dy} / \mathrm{dx})=\mathrm{y}(\log \mathrm{y}-\log \mathrm{x}+1)\), then the solution of the equation is: (A) \(x \log (\mathrm{y} / \mathrm{x})=\mathrm{cy}\) (B) \(\log (\mathrm{y} / \mathrm{x})=\mathrm{cx}\) (C) \(\log (\mathrm{x} / \mathrm{y})=\mathrm{cy}\) (D) \(\mathrm{y} \cdot \log (\mathrm{x} / \mathrm{y})=\mathrm{cx}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.