Chapter 13: Problem 1112
Integrating factor of differential equation \((1+x)(d y / d x)-x \cdot y=1-x\) is: (A) \(1+\mathrm{x}\) (B) \(\log (1+x)\) (C) \(e^{-x}(1+x)\) (D) \(x \cdot e^{x}\)
Chapter 13: Problem 1112
Integrating factor of differential equation \((1+x)(d y / d x)-x \cdot y=1-x\) is: (A) \(1+\mathrm{x}\) (B) \(\log (1+x)\) (C) \(e^{-x}(1+x)\) (D) \(x \cdot e^{x}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the slope of tangent at \((\mathrm{x}, \mathrm{y})\) to the curve passing through \((2,1)\) is \(\left[\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) /(2 \mathrm{xy})\right]\). The equation of the curve is: (A) \(2\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)=6 \mathrm{y}\) (B) \(2\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)=3 \mathrm{x}\) (C) \(x\left(x^{2}+y^{2}\right)=10\) (D) \(x\left(x^{2}-y^{2}\right)=6\)
The solution of \(\mathrm{xdy}-\mathrm{ydx}=0\) represents: (A) parabola having vertex at \((0,0)\) (B) circle having centre at \((0,0)\) (C) a straight line passing through \((0,0)\) (D) a rectangular hyperbola
The differential equation of family of curves \(\mathrm{y}=\mathrm{Ax}+(\mathrm{B} / \mathrm{x})\) is: (A) \(\left.\mathrm{y}\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)+\mathrm{x}^{2} \mathrm{dy} / \mathrm{dx}\right)-\mathrm{y}=0\) (B) \(y\left(d^{2} y / d x^{2}\right)+x^{2}(d y / d x)+y=0\) (C) \(x^{2}\left(d^{2} y / d x^{2}\right)+x(d y / d x)-y=0\) (D) \(x^{2}\left(d^{2} y / d x^{2}\right)+x(d y / d x)+y=0\)
The solution of \(\mathrm{x}^{2} \mathrm{y}-\mathrm{x}^{3}(\mathrm{dy} / \mathrm{dx})=\mathrm{y}^{4} \cos \mathrm{x} ; \mathrm{y}(0)=1\) is: (A) \(x^{3}=y^{3} \sin x\) (B) \(x^{3}=3 y^{3} \sin x\) (C) \(y^{3}=3 x^{3} \sin x\) (D) none the these
The solution of the equation \(\mathrm{x}+\mathrm{y}(\mathrm{dy} / \mathrm{d} \mathrm{x})=2 \mathrm{y}\) is: (A) \(x y^{2}=c^{2}(x+2 y)\) (B) \(\mathrm{y}^{2}=\mathrm{c}\left(\mathrm{x}^{2}+2 \mathrm{y}\right)\) (C) \(\log (\mathrm{y}-\mathrm{x})=\mathrm{c}+[\mathrm{x} /(\mathrm{y}-\mathrm{x})]\) (D) \(\log [\mathrm{x} /(\mathrm{x}-\mathrm{y})]=\mathrm{c}+\mathrm{y}-\mathrm{x}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.