Chapter 13: Problem 1112
Integrating factor of differential equation \((1+x)(d y / d x)-x \cdot y=1-x\) is: (A) \(1+\mathrm{x}\) (B) \(\log (1+x)\) (C) \(e^{-x}(1+x)\) (D) \(x \cdot e^{x}\)
Chapter 13: Problem 1112
Integrating factor of differential equation \((1+x)(d y / d x)-x \cdot y=1-x\) is: (A) \(1+\mathrm{x}\) (B) \(\log (1+x)\) (C) \(e^{-x}(1+x)\) (D) \(x \cdot e^{x}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe degree and order of the differential equation of the family of all parabolas whose axis is \(\mathrm{x}\) -axis, are respectively. (A) 1,2 (B) 3,2 (C) 2,3 (D) 2,1
Solution of \((\mathrm{y} / \mathrm{x}) \cos (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})-(\mathrm{y} / \mathrm{x})]\) \(+\sin (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})+(\mathrm{y} / \mathrm{x})]=0 ; \mathrm{y}(1)=(\pi / 2)\) is: (A) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 2 \mathrm{x})\) (B) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / \mathrm{x})\) (C) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 3 \mathrm{x})\) (D) none of these
The equation of a curve passing through \([2,(7 / 2)]\) and having gradient \(1-\left(1 / \mathrm{x}^{2}\right)\) at \((\mathrm{x}, \mathrm{y})\) is: (A) \(x y=x+1\) (B) \(x^{2}+x+1\) (C) \(x y=x^{2}+x+1\) (D) none of these
If \(\sin (x+y)(d y / d x)=5\) then (A) \(5 \int[(\mathrm{dt}) /(5+\sin \mathrm{t})]=\mathrm{t}+\mathrm{x}(\) where \(\mathrm{t}=\mathrm{x}+\mathrm{y})\) (B) \(5 \int[(\mathrm{dt}) /(5+\sin \mathrm{t})]=\mathrm{t}-\mathrm{x}(\) where \(\mathrm{t}=\mathrm{x}+\mathrm{y})\) (C) \(\int[(\mathrm{dt}) /(5+\operatorname{cosec} \mathrm{t})]=\mathrm{d} \mathrm{x}(\) where \(\mathrm{t}=\mathrm{x}+\mathrm{y})\) (D) \(\int[(\mathrm{dt}) /(5 \sin t+1)]=\mathrm{dt}(\) where \(t=x+y)\)
The Integrating factor of the differential equation \(\left(1-\mathrm{y}^{2}\right)(\mathrm{dy} / \mathrm{dx})-\mathrm{yx}=1\) is: (A) \(\left[1 / \sqrt{ \left.\left(1-\mathrm{y}^{2}\right)\right]}\right.\) (B) \(\sqrt{\left(1-\mathrm{y}^{2}\right)}\) (C) \(\left[1 /\left(1-\mathrm{y}^{2}\right)\right]\) (D) \(1-\mathrm{y}^{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.