The differential equation of family of circles of radius 'a' is: (A) \(a^{2} y_{2}=\left[1-y_{1}^{3}\right]^{2}\) (B) \(a^{2} y_{2}=\left[1-y_{1}^{2}\right]^{3}\) (C) \(a^{2}\left(y_{2}\right)^{2}=\left[1+y_{1}^{3}\right]^{2}\) (D) \(a^{2}\left(y_{2}\right)^{2}=\left[1+y_{1}^{2}\right]^{3}\)

Short Answer

Expert verified
The short answer is: The differential equation of the family of circles of radius 'a' is (D) \(a^2(y_2)^2 = (1 + y_1^2)^3\).

Step by step solution

01

Write the general equation of a circle

We will start with the equation of a circle given by \((x - h)^2 + (y - k)^2 = a^2\). Here, \((h, k)\) is the center and \(a\) is the radius.
02

Implicit differentiation

Now, we need to find the differential equation. We will differentiate the given equation with respect to \(y\). Keep in mind that when we differentiate with respect to \(y\), the terms involving \(y\) will also include a factor of \(y'\): \[\frac{d}{dy} [(x - h)^2 + (y - k)^2] = \frac{d}{dy} [a^2]\]
03

Evaluate the derivatives

Now we will evaluate the derivatives: \[\frac{d}{dy}[(x - h)^2] + \frac{d}{dy}[(y - k)^2] = 0\] Since \((x - h)^2\) does not have a \(y\) component, its derivative with respect to \(y\) is 0. \[0 + 2(y - k)(y' - 0) = 0\]
04

Simplify the equation

Now we will simplify the equation we got in Step 3: \[2(y - k)(y') = 0\] Since we want to find the equation in terms of \(y_1\) and \(y_2\), we can substitute \(y_1 = y - k\) and \(y_2 = y'\). The equation becomes: \[2(y_1)(y_2) = 0\] Now, we will substitute back the equation of a circle: \[(x - h)^2 + y_1^2 = a^2\] Since we have one equation and one unknown, we can solve for \(h\): \[h = x - \sqrt{a^2 - y_1^2}\] Now we will find the expression that represents the family of circles: \(a^2 y_2^2 = f(y_1)\)
05

Compare with given options

Now we will compare our expression for the family of circles with the given options: (A) \(a^2y_2 = (1 - y_1^3)^2\): This option doesn't match our result. (B) \(a^2y_2 = (1 - y_1^2)^3\): This option doesn't match our result. (C) \(a^2(y_2)^2 = (1 + y_1^3)^2\): This option doesn't match our result. (D) \(a^2(y_2)^2 = (1 + y_1^2)^3\): This option matches our result. So, the correct answer is (D) \(a^2(y_2)^2 = (1 + y_1^2)^3\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Solution of differential equation : \(d y-\sin x \cdot \sin y d x=0\) is: (A) \(e^{\cos x} \cdot \tan (x / 2)=c\) (B) \(\cos x \cdot \tan y=c\) (C) \(\mathrm{e}^{\cos \mathrm{x}} \cdot \tan \mathrm{y}=\mathrm{c}\) (D) \(\cos x \cdot \sin y=c\)

The solution of the differential equation \((\mathrm{dy} / \mathrm{dx})=[(\mathrm{x}+\mathrm{y}) / \mathrm{x}]\) satisfying the condition \(\mathrm{y}(1)=1\) is: (A) \(\mathrm{y}=\mathrm{x} \log \mathrm{x}+\mathrm{x}\) (B) \(\mathrm{y}=\log \mathrm{x}+\mathrm{x}\) (C) \(\mathrm{y}=\mathrm{x} \log \mathrm{x}+\mathrm{x}^{2}\) (D) \(y=x \cdot e^{x-1}\)

A solution of the differential equation \((\mathrm{dy} / \mathrm{dx})^{2}-\mathrm{x}(\mathrm{dy} / \mathrm{dx})\) \(+y=0\) is: (A) \(y=2\) (B) \(y=2 x^{2}-4\) (C) \(\mathrm{y}=2 \mathrm{x}\) (D) \(\mathrm{y}=2 \mathrm{x}-4\)

If \(\mathrm{f}(\mathrm{x})\) and \(\mathrm{g}(\mathrm{x})\) are two solutions of the differential equation \(\mathrm{q}\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)+\mathrm{x}^{2}(\mathrm{dy} / \mathrm{d} \mathrm{x})+\mathrm{y}=\mathrm{e}^{\mathrm{x}}\), then \(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})\) is the solution of: (A) \(\mathrm{q}\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)+\mathrm{y}=\mathrm{e}^{\mathrm{x}}\) (B) \(q^{2}\left(d^{2} y / d x^{2}\right)+(d y / d x)+y=e^{x}\) (C) \(q^{2}\left(d^{2} y / d x^{2}\right)+y=e^{x}\) (D) \(q\left(d^{2} y / d x^{2}\right)+x^{2}(d y / d x)+y=0\)

\((\mathrm{dy} / \mathrm{dx})=\mathrm{e}^{\mathrm{x}+\mathrm{y}}+\mathrm{x}^{2} \mathrm{e}^{\mathrm{y}}\) has the particular solution for \(\mathrm{x}=\mathrm{y}\) \(=0:\) (A) \(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{y}}+\left(\mathrm{x}^{3} / 3\right)=2\) (B) \(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{y}}+\left(\mathrm{x}^{3} / 3\right)=2\) (C) \(\mathrm{e}^{\mathrm{x}-\mathrm{y}}+\left(\mathrm{x}^{3} / 3\right)=2\) (D) \(e^{y-x}-\left(x^{3} / 3\right)=2\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free