If \(\mathrm{f}(\mathrm{x})\) and \(\mathrm{g}(\mathrm{x})\) are two solutions of
the differential equation \(\mathrm{q}\left(\mathrm{d}^{2} \mathrm{y} /
\mathrm{d} \mathrm{x}^{2}\right)+\mathrm{x}^{2}(\mathrm{dy} / \mathrm{d}
\mathrm{x})+\mathrm{y}=\mathrm{e}^{\mathrm{x}}\), then
\(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})\) is the
solution of:
(A) \(\mathrm{q}\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d}
\mathrm{x}^{2}\right)+\mathrm{y}=\mathrm{e}^{\mathrm{x}}\)
(B) \(q^{2}\left(d^{2} y / d x^{2}\right)+(d y / d x)+y=e^{x}\)
(C) \(q^{2}\left(d^{2} y / d x^{2}\right)+y=e^{x}\)
(D) \(q\left(d^{2} y / d x^{2}\right)+x^{2}(d y / d x)+y=0\)