Solution of differential equation \((\mathrm{dy} / \mathrm{dx})+\mathrm{ay}=\mathrm{e}^{\mathrm{mx}}\) is: (A) \(y=e^{m x}+c \cdot e^{-a x}\) (B) \((\mathrm{a}+\mathrm{m}) \mathrm{y}=\mathrm{e}^{\mathrm{mx}}+\mathrm{c}\) (C) \((a+m) y=e^{m x}+c \cdot e^{-a x}\) (D) \(\mathrm{y} \cdot \mathrm{e}^{\mathrm{ax}}=\mathrm{m} \cdot \mathrm{e}^{\mathrm{mx}}+\mathrm{c}\)

Short Answer

Expert verified
The short answer is: \((a+m)y = e^{mx} + C \cdot e^{-ax}\).

Step by step solution

01

Identify the integrating factor

We first find the integrating factor, which is given by the exponential of the integral of the coefficient of y (which is a). To find the integrating factor, we compute: \(I(x) = e^{\int a dx}\)
02

Calculate the integrating factor

Now we can calculate the integrating factor: \(I(x) = e^{ax}\)
03

Multiply both sides of the equation by the integrating factor

Next, we multiply both sides of the differential equation by the integrating factor: \(e^{ax} \left(\frac{dy}{dx} + ay\right) = e^{ax}e^{mx}\)
04

Combine the derivatives on the left side of the equation

On the left side of the equation, we can use the product rule in reverse to combine the terms into a single derivative: \(\frac{d}{dx}\left(e^{ax}y\right) = e^{ax}e^{mx}\)
05

Integrate both sides of the equation with respect to x

Now we integrate both sides of the equation with respect to x: \(\int\frac{d}{dx} \left(e^{ax}y\right)dx = \int e^{ax}e^{mx}dx\) \(e^{ax}y = \int e^{(a+m)x}dx + C\)
06

Solve for y

Finally, we can solve for y: \(y = e^{-ax}\left(\int e^{(a+m)x}dx + C\right)\) To match one of the answer choices, we split the integral and the constant term: \(y = e^{-ax}\left(\int e^{(a+m)x}dx\right) + e^{-ax}C\) And rewrite the integral in terms of another constant: \(y = e^{-ax}Ae^{(a+m)x} + e^{-ax}C\) Because \(\int e^{(a+m)x}dx = \frac{1}{a+m}e^{(a+m)x} + K\), we can rewrite the equation as: \(y = e^{-ax}\left(\frac{1}{a+m}e^{(a+m)x} + Ce^{-ax}\right)\) Now we compare our solution to the given options: (A) \(y=e^{mx}+c \cdot e^{-ax}\) (B) \((a+m) y=e^{mx}+c\) (C) \((a+m) y=e^{mx}+c \cdot e^{-ax}\) (D) \(y \cdot e^{ax}=m \cdot e^{mx}+c\) In the end, we can see that our solution matches option (C): \((a+m)y = e^{mx} + C \cdot e^{-ax}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The solution of the equation \(\mathrm{x}+\mathrm{y}(\mathrm{dy} / \mathrm{d} \mathrm{x})=2 \mathrm{y}\) is: (A) \(x y^{2}=c^{2}(x+2 y)\) (B) \(\mathrm{y}^{2}=\mathrm{c}\left(\mathrm{x}^{2}+2 \mathrm{y}\right)\) (C) \(\log (\mathrm{y}-\mathrm{x})=\mathrm{c}+[\mathrm{x} /(\mathrm{y}-\mathrm{x})]\) (D) \(\log [\mathrm{x} /(\mathrm{x}-\mathrm{y})]=\mathrm{c}+\mathrm{y}-\mathrm{x}\)

The differential equation of family of curves \(\mathrm{y}=\mathrm{Ax}+(\mathrm{B} / \mathrm{x})\) is: (A) \(\left.\mathrm{y}\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)+\mathrm{x}^{2} \mathrm{dy} / \mathrm{dx}\right)-\mathrm{y}=0\) (B) \(y\left(d^{2} y / d x^{2}\right)+x^{2}(d y / d x)+y=0\) (C) \(x^{2}\left(d^{2} y / d x^{2}\right)+x(d y / d x)-y=0\) (D) \(x^{2}\left(d^{2} y / d x^{2}\right)+x(d y / d x)+y=0\)

The solution of the equation \(\left(d^{2} y / d x^{2}\right)=e^{-2 x}\) is: \(y=\) (A) \((1 / 4) \mathrm{e}^{-2 \mathrm{x}}+\mathrm{cx}+\mathrm{d}\) (B) \((1 / 4) e^{-2 \mathrm{x}}\) (C) \((1 / 4) e^{-2 x}+c x^{2}+d\) (D) \((1 / 4) e^{-2 x}+c x+d\)

Differential equation of the curves having the subnormal with \((7 / 2)\) units and passes through \((0,0)\) is: (A) \(x^{2}=7 y\) (B) \(\mathrm{y}^{2}=7 \mathrm{x}+\mathrm{c}, \mathrm{c} \neq 0\) (C) \(y^{2}=7 x\) (D) None of these

The solution of the differential equation \(\left(1+\mathrm{y}^{2}\right)+\left(\mathrm{x}-\mathrm{e}^{(\tan )-1 \mathrm{y}}\right)(\mathrm{dy} / \mathrm{dx})=0\) is: (A) \(x \cdot e^{(\tan )-1 y}=\tan ^{-1} y+k\) (B) \(x \cdot e^{(2 \tan )-1 y}=e^{-(\tan )-1 y}+k\) (C) \(2 \mathrm{x} \cdot \mathrm{e}^{(\tan )-1 \mathrm{y}}=\mathrm{e}^{(2 \tan )-1 \mathrm{y}}+\mathrm{k}\) (D) \((\mathrm{x}-2)=\mathrm{k} \cdot \mathrm{e}^{(\tan )-1 \mathrm{y}}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free