The solution of \(\mathrm{xdy}-\mathrm{ydx}=0\) represents: (A) parabola having vertex at \((0,0)\) (B) circle having centre at \((0,0)\) (C) a straight line passing through \((0,0)\) (D) a rectangular hyperbola

Short Answer

Expert verified
The solution of the given differential equation represents (C) a straight line passing through (0,0).

Step by step solution

01

Rewrite the Differential Equation

We can rewrite the given equation \(\mathrm{xdy}-\mathrm{ydx}=0\) as a separable equation: \(\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{y}{x}\)
02

Separate the Variables

Next, we separate the variables to get: \(\frac{\mathrm{dy}}{y} = \frac{\mathrm{dx}}{x}\)
03

Integrate Both Sides

Now, we integrate both sides: \(\int \frac{\mathrm{dy}}{y} = \int \frac{\mathrm{dx}}{x}\) Applying the integration, we get: \(\ln|y| = \ln|x | + C \), where \(C\) is the integration constant.
04

Simplify the Equation

Exponentiate both sides to remove the ln function: \(y = x \cdot e^C\) Since \(e^C\) is just a constant, let's call it \(k\). Therefore, our equation becomes: \(y = kx\)
05

Determine the Graphical Representation

The equation that we got, \(y = kx\), represents a straight line passing through the origin (0,0). So, the correct option is: (C) a straight line passing through (0,0)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Solution of \(\left(d^{2} y / d x^{2}\right)=\log x\) is: (A) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}-(3 / 4) \mathrm{x}^{2}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (B) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}+(3 / 4) \mathrm{x}^{2}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (C) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}-(3 / 4) \mathrm{x}^{2}-\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (D) None of these

The general solution of \([\mathrm{x}(\mathrm{dy} / \mathrm{dx})-\mathrm{y}] \mathrm{e}^{(\mathrm{y} / \mathrm{x})}=\mathrm{x}^{2} \cos \mathrm{x}\) is: (A) \(\mathrm{e}^{(\mathrm{x} / \mathrm{y})}=\cos \mathrm{x}+\mathrm{c}\) (B) \(\mathrm{e}^{(\mathrm{x} / \mathrm{y})}=\sin \mathrm{x}+\mathrm{c}\) (C) \(e^{(y / x)}=\sin x+c\) (D) \(e^{(y / x)}=\cos x+c\)

The solution of the equation \(\left(d^{2} y / d x^{2}\right)=e^{-2 x}\) is: \(y=\) (A) \((1 / 4) \mathrm{e}^{-2 \mathrm{x}}+\mathrm{cx}+\mathrm{d}\) (B) \((1 / 4) e^{-2 \mathrm{x}}\) (C) \((1 / 4) e^{-2 x}+c x^{2}+d\) (D) \((1 / 4) e^{-2 x}+c x+d\)

Solution of \((\mathrm{y} / \mathrm{x}) \cos (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})-(\mathrm{y} / \mathrm{x})]\) \(+\sin (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})+(\mathrm{y} / \mathrm{x})]=0 ; \mathrm{y}(1)=(\pi / 2)\) is: (A) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 2 \mathrm{x})\) (B) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / \mathrm{x})\) (C) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 3 \mathrm{x})\) (D) none of these

The solution of the differential equation \((\mathrm{dy} / \mathrm{dx})=(\mathrm{y} / \mathrm{x})+\left[\\{\Phi(\mathrm{y} / \mathrm{x})\\} /\left\\{\Phi^{1}(\mathrm{y} / \mathrm{x})\right\\}\right]\) is: (A) \(\phi(\mathrm{y} / \mathrm{x})=\mathrm{kx}\) (B) \(\Phi(\mathrm{y} / \mathrm{x})=\mathrm{ky}\) (C) \(\mathrm{x} \cdot \Phi(\mathrm{y} / \mathrm{x})=\mathrm{k}\) (D) \(\mathrm{y} \cdot \Phi(\mathrm{y} / \mathrm{x})=\mathrm{k}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free