Chapter 13: Problem 1139
The solution of \(\mathrm{xdy}-\mathrm{ydx}=0\) represents: (A) parabola having vertex at \((0,0)\) (B) circle having centre at \((0,0)\) (C) a straight line passing through \((0,0)\) (D) a rectangular hyperbola
Chapter 13: Problem 1139
The solution of \(\mathrm{xdy}-\mathrm{ydx}=0\) represents: (A) parabola having vertex at \((0,0)\) (B) circle having centre at \((0,0)\) (C) a straight line passing through \((0,0)\) (D) a rectangular hyperbola
All the tools & learning materials you need for study success - in one app.
Get started for freeSolution of \(\left(d^{2} y / d x^{2}\right)=\log x\) is: (A) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}-(3 / 4) \mathrm{x}^{2}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (B) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}+(3 / 4) \mathrm{x}^{2}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (C) \(\mathrm{y}=(1 / 2) \mathrm{x}^{2} \log \mathrm{x}-(3 / 4) \mathrm{x}^{2}-\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\) (D) None of these
The general solution of \([\mathrm{x}(\mathrm{dy} / \mathrm{dx})-\mathrm{y}] \mathrm{e}^{(\mathrm{y} / \mathrm{x})}=\mathrm{x}^{2} \cos \mathrm{x}\) is: (A) \(\mathrm{e}^{(\mathrm{x} / \mathrm{y})}=\cos \mathrm{x}+\mathrm{c}\) (B) \(\mathrm{e}^{(\mathrm{x} / \mathrm{y})}=\sin \mathrm{x}+\mathrm{c}\) (C) \(e^{(y / x)}=\sin x+c\) (D) \(e^{(y / x)}=\cos x+c\)
The solution of the equation \(\left(d^{2} y / d x^{2}\right)=e^{-2 x}\) is: \(y=\) (A) \((1 / 4) \mathrm{e}^{-2 \mathrm{x}}+\mathrm{cx}+\mathrm{d}\) (B) \((1 / 4) e^{-2 \mathrm{x}}\) (C) \((1 / 4) e^{-2 x}+c x^{2}+d\) (D) \((1 / 4) e^{-2 x}+c x+d\)
Solution of \((\mathrm{y} / \mathrm{x}) \cos (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})-(\mathrm{y} / \mathrm{x})]\) \(+\sin (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})+(\mathrm{y} / \mathrm{x})]=0 ; \mathrm{y}(1)=(\pi / 2)\) is: (A) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 2 \mathrm{x})\) (B) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / \mathrm{x})\) (C) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 3 \mathrm{x})\) (D) none of these
The solution of the differential equation \((\mathrm{dy} / \mathrm{dx})=(\mathrm{y} / \mathrm{x})+\left[\\{\Phi(\mathrm{y} / \mathrm{x})\\} /\left\\{\Phi^{1}(\mathrm{y} / \mathrm{x})\right\\}\right]\) is: (A) \(\phi(\mathrm{y} / \mathrm{x})=\mathrm{kx}\) (B) \(\Phi(\mathrm{y} / \mathrm{x})=\mathrm{ky}\) (C) \(\mathrm{x} \cdot \Phi(\mathrm{y} / \mathrm{x})=\mathrm{k}\) (D) \(\mathrm{y} \cdot \Phi(\mathrm{y} / \mathrm{x})=\mathrm{k}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.