Chapter 13: Problem 1141
The solution of \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)=0\) represents: (A) a point (B) a straight line (C) a parabola (D) a circle
Chapter 13: Problem 1141
The solution of \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)=0\) represents: (A) a point (B) a straight line (C) a parabola (D) a circle
All the tools & learning materials you need for study success - in one app.
Get started for freeThe differential equation of all parabolas having axis parallel to y-axis: (A) \(\left(\mathrm{d}^{3} \mathrm{x} / \mathrm{dy}^{3}\right)^{2}=0\) (B) \(\left(\mathrm{d}^{3} \mathrm{y} / \mathrm{dx}^{3}\right)=0\) (C) \(\left(\mathrm{d}^{3} \mathrm{y} / \mathrm{dx}^{3}\right)+\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)=0\) (D) \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)=0\)
Family \(\mathrm{y}=\mathrm{Ax}+\mathrm{A}^{3}\) of curves is represented by the differential equation of degree: (A) 1 (B) 2 (C) 3 (D) 4
If \(\sin x\) is an Integrating factor of \((d y / d x)+p \cdot y=Q\) then \(p\) is: (A) \(\sin x\) (B) \(\log \sin x\) (C) \(\cot x\) (D) \(\log \cos x\)
Which of the following equations is a linear equation of order \(3 ?\) (A) \(\left(\mathrm{d}^{3} \mathrm{y} / \mathrm{dx}^{3}\right)+\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right) \cdot(\mathrm{dy} / \mathrm{dx})+\mathrm{y}=\mathrm{x}\) (B) \(\left(\mathrm{d}^{3} \mathrm{y} / \mathrm{dx}^{3}\right)+\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)+\mathrm{y}^{2}=\mathrm{x}^{2}\) (C) \(x \cdot\left(d^{3} y / d x^{3}\right)+\left(d^{3} y / d x^{3}\right)=e^{x}\) (D) \(\left(d^{2} y / d x^{2}\right)+(d y / d x)=\log x\)
The solution of the differential equation \(\mathrm{ydx}+\left(\mathrm{x}+\mathrm{x}^{2} \mathrm{y}\right) \mathrm{dy}=0\) is: (A) \((1 / \mathrm{xy})+\log \mathrm{y}=\mathrm{c}\) (B) \(-(1 / x y)+\log y=c\) (C) \(-(1 / \mathrm{xy})=\mathrm{c}\) (D) \(\log \mathrm{y}=\mathrm{cx}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.