Chapter 13: Problem 1141
The solution of \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)=0\) represents: (A) a point (B) a straight line (C) a parabola (D) a circle
Chapter 13: Problem 1141
The solution of \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)=0\) represents: (A) a point (B) a straight line (C) a parabola (D) a circle
All the tools & learning materials you need for study success - in one app.
Get started for freeIntegrating factor of differential equation \((1+x)(d y / d x)-x \cdot y=1-x\) is: (A) \(1+\mathrm{x}\) (B) \(\log (1+x)\) (C) \(e^{-x}(1+x)\) (D) \(x \cdot e^{x}\)
The differential equation representing the family of curves \(\mathrm{y}^{2}=2 \mathrm{c}(\mathrm{x}+\mathrm{v} \mathrm{c})\), where \(\mathrm{c}\) is a positive parameter, is of order and degree as follows. (A) order 2, degree 1 (B) order 1 , degree 2 (C) order 2 , degree 2 (D) order 1 , degree 3
The differential equation of all parabolas having axis parallel to y-axis: (A) \(\left(\mathrm{d}^{3} \mathrm{x} / \mathrm{dy}^{3}\right)^{2}=0\) (B) \(\left(\mathrm{d}^{3} \mathrm{y} / \mathrm{dx}^{3}\right)=0\) (C) \(\left(\mathrm{d}^{3} \mathrm{y} / \mathrm{dx}^{3}\right)+\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)=0\) (D) \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)=0\)
\(\underline{\text { Assertion - Reason Type Questions: }}\) Each question has four choices (a), (b), (c) and (d) out of which only one is correct. Write (a), (b), (c) and (d) according to the following rules. (a) Statement- 1 is True, Statement-2 is True, Statement- 2 is a correct explanation for Statement-1. (b) Statement-1 is True, Statement- 2 is True, Statement-2 is not a correct explanation for Statement-1. (c) Statement- 1 is True, Statement- 2 is False. (d) Statement- 1 is False, Statement- 2 is True. Statement \(-2:\) The differential equation \(\mathrm{y}^{\prime}=(\mathrm{y} / 2 \mathrm{x})\) is variable separable. Statement-1: Curve satisfying the differential equation \((\mathrm{dy} / \mathrm{dx})=(\mathrm{y} / 2 \mathrm{x})\) passing through \((2,1)\) is a parabola with Focus \([(1 / 4), \underline{0}]\). Statement- 2 : The differential equation \((\mathrm{dy} / \mathrm{dx})=(\mathrm{y} / 2 \mathrm{x})\) is variable separable.
The solution of the equation \(\left(d^{2} y / d x^{2}\right)=e^{-2 x}\) is: \(y=\) (A) \((1 / 4) \mathrm{e}^{-2 \mathrm{x}}+\mathrm{cx}+\mathrm{d}\) (B) \((1 / 4) e^{-2 \mathrm{x}}\) (C) \((1 / 4) e^{-2 x}+c x^{2}+d\) (D) \((1 / 4) e^{-2 x}+c x+d\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.