The solution of the equation \(\left(d^{2} y / d x^{2}\right)=e^{-2 x}\) is: \(y=\) (A) \((1 / 4) \mathrm{e}^{-2 \mathrm{x}}+\mathrm{cx}+\mathrm{d}\) (B) \((1 / 4) e^{-2 \mathrm{x}}\) (C) \((1 / 4) e^{-2 x}+c x^{2}+d\) (D) \((1 / 4) e^{-2 x}+c x+d\)

Short Answer

Expert verified
The solution of the equation \(\frac{d^2y}{dx^2} = e^{-2x}\) is: \(y(x) = -\frac{1}{4} e^{-2x} + C_1x + C_2\) Comparing this to the given options, the correct option is (D) with the appropriate constants \(C_1=c\) and \(C_2=d\): \(y(x) = \frac{1}{4} e^{-2x} + cx + d\)

Step by step solution

01

Integrate the given equation once:

The equation we want to solve is: \(\frac{d^2y}{dx^2} = e^{-2x}\) First, let's integrate both sides with respect to x to find the first order derivative: \(\int \frac{d^2y}{dx^2} \, dx = \int e^{-2x} \, dx\) This gives us: \(\frac{dy}{dx} = -\frac{1}{2} e^{-2x} + C_1\) Here, \(C_1\) is the constant of integration. #Step 2: Solving for the general solution y(x)#
02

Integrate the equation again:

We now have the first order derivative, so we can integrate again with respect to x to find the general solution: \(\int \frac{dy}{dx} \, dx = \int \left(-\frac{1}{2} e^{-2x} + C_1\right) dx\) This gives us: \(y(x) = -\frac{1}{4} e^{-2x} + C_1x + C_2\) Here, \(C_2\) is another constant of integration. Now, let's compare our general solution to the given options: (A) \(\frac{1}{4} e^{-2x} + cx + d\) (B) \(\frac{1}{4} e^{-2x}\) (C) \(\frac{1}{4} e^{-2x} + cx^2 + d\) (D) \(\frac{1}{4} e^{-2x} + cx + d\) #Step 3: Identify the correct option#
03

Compare the general solution to the given options

Our general solution is: \(y(x) = -\frac{1}{4} e^{-2x} + C_1x + C_2\) Comparing this to the given options, we can see that the correct option is (D) with the appropriate constants \(C_1=c\) and \(C_2=d\). So, the final answer is: (D) \(y(x) = \frac{1}{4} e^{-2x} + cx + d\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The differential equation of all conics having centre at the origin is of order. (A) 2 (B) 3 (C) 4 (D) 5

The general solution of \([\mathrm{x}(\mathrm{dy} / \mathrm{dx})-\mathrm{y}] \mathrm{e}^{(\mathrm{y} / \mathrm{x})}=\mathrm{x}^{2} \cos \mathrm{x}\) is: (A) \(\mathrm{e}^{(\mathrm{x} / \mathrm{y})}=\cos \mathrm{x}+\mathrm{c}\) (B) \(\mathrm{e}^{(\mathrm{x} / \mathrm{y})}=\sin \mathrm{x}+\mathrm{c}\) (C) \(e^{(y / x)}=\sin x+c\) (D) \(e^{(y / x)}=\cos x+c\)

If \(\mathrm{f}(\mathrm{x})\) and \(\mathrm{g}(\mathrm{x})\) are two solutions of the differential equation \(\mathrm{q}\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)+\mathrm{x}^{2}(\mathrm{dy} / \mathrm{d} \mathrm{x})+\mathrm{y}=\mathrm{e}^{\mathrm{x}}\), then \(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})\) is the solution of: (A) \(\mathrm{q}\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)+\mathrm{y}=\mathrm{e}^{\mathrm{x}}\) (B) \(q^{2}\left(d^{2} y / d x^{2}\right)+(d y / d x)+y=e^{x}\) (C) \(q^{2}\left(d^{2} y / d x^{2}\right)+y=e^{x}\) (D) \(q\left(d^{2} y / d x^{2}\right)+x^{2}(d y / d x)+y=0\)

The differential equation which represents the family of curves \(\mathrm{y}=\mathrm{c}_{1} \mathrm{e}^{(\mathrm{c}) 2 \mathrm{x}}\), where \(\mathrm{c}_{1}\) and \(\mathrm{c}_{2}\) are arbitarary constants, is: (A) \(y^{\prime}=y^{2}\) (B) \(\mathrm{y}^{\prime \prime}=\mathrm{y}^{\prime} \mathrm{y}\) (C) \(\mathrm{yy}^{\prime \prime}=\left(\mathrm{y}^{1}\right)^{2}\) (D) \(\mathrm{yy}^{\prime \prime}=\mathrm{y}^{\prime}\)

If \(\sin (x+y)(d y / d x)=5\) then (A) \(5 \int[(\mathrm{dt}) /(5+\sin \mathrm{t})]=\mathrm{t}+\mathrm{x}(\) where \(\mathrm{t}=\mathrm{x}+\mathrm{y})\) (B) \(5 \int[(\mathrm{dt}) /(5+\sin \mathrm{t})]=\mathrm{t}-\mathrm{x}(\) where \(\mathrm{t}=\mathrm{x}+\mathrm{y})\) (C) \(\int[(\mathrm{dt}) /(5+\operatorname{cosec} \mathrm{t})]=\mathrm{d} \mathrm{x}(\) where \(\mathrm{t}=\mathrm{x}+\mathrm{y})\) (D) \(\int[(\mathrm{dt}) /(5 \sin t+1)]=\mathrm{dt}(\) where \(t=x+y)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free