Chapter 13: Problem 1144
If \((\mathrm{dy} / \mathrm{dx})=\mathrm{y}+3>0\) and \(\mathrm{y}(0)=2\), then \(\mathrm{y}(\log 2)\) is equal to. \(\begin{array}{ll}\text { (A) }-2 & \text { (B) } 5\end{array}\) (C) 7 (D) 13
Chapter 13: Problem 1144
If \((\mathrm{dy} / \mathrm{dx})=\mathrm{y}+3>0\) and \(\mathrm{y}(0)=2\), then \(\mathrm{y}(\log 2)\) is equal to. \(\begin{array}{ll}\text { (A) }-2 & \text { (B) } 5\end{array}\) (C) 7 (D) 13
All the tools & learning materials you need for study success - in one app.
Get started for freeIntegrating factor of differential equation \([1 /(\cos x)] \cdot(d y / d x)+[1 /(\sin x)] y=1\) is. (A) \(\sec x\) (B) \(\cos \mathrm{x}\) (C) \(\tan \mathrm{x}\) (D) \(\sin \mathrm{x}\)
Family of curves \(\mathrm{y}=\mathrm{e}^{\mathrm{x}}(\mathrm{A} \cos \mathrm{x}+\mathrm{B} \sin \mathrm{x})\) represents the differential equation: \(\quad\) (where \(\mathrm{A}\) and \(\mathrm{B}\) are arbitrary constant) (A) \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)-2(\mathrm{dy} / \mathrm{dx})+\mathrm{y}=0\) (B) \(\left(d^{2} y / d x^{2}\right)-2(d y / d x)-2 y=0\) (C) \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)-2(\mathrm{dy} / \mathrm{dx})-\mathrm{y}=0\) (D) \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)-2(\mathrm{dy} / \mathrm{dx})+2 \mathrm{y}=0\)
Solution of \((\mathrm{y} / \mathrm{x}) \cos (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})-(\mathrm{y} / \mathrm{x})]\) \(+\sin (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})+(\mathrm{y} / \mathrm{x})]=0 ; \mathrm{y}(1)=(\pi / 2)\) is: (A) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 2 \mathrm{x})\) (B) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / \mathrm{x})\) (C) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 3 \mathrm{x})\) (D) none of these
Let \(\mathrm{m}\) and \(\mathrm{n}\) be respectively the degree and order of the differential equation of whose solution is \(\mathrm{y}=\mathrm{cx}+\mathrm{c}^{2}-3 \mathrm{c}^{(3 / 2)}+2\) where \(\mathrm{c}\) is parameter is (A) \(\mathrm{m}=1, \mathrm{n}=4\) (B) \(\mathrm{m}=1, \mathrm{n}=4\) (C) \(\mathrm{m}=2, \mathrm{n}=2\) (D) \(\mathrm{m}=4, \mathrm{n}=1\)
If \(\mathrm{x}(\mathrm{dy} / \mathrm{dx})=\mathrm{y}(\log \mathrm{y}-\log \mathrm{x}+1)\), then the solution of the equation is: (A) \(x \log (\mathrm{y} / \mathrm{x})=\mathrm{cy}\) (B) \(\log (\mathrm{y} / \mathrm{x})=\mathrm{cx}\) (C) \(\log (\mathrm{x} / \mathrm{y})=\mathrm{cy}\) (D) \(\mathrm{y} \cdot \log (\mathrm{x} / \mathrm{y})=\mathrm{cx}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.