Chapter 13: Problem 1144
If \((\mathrm{dy} / \mathrm{dx})=\mathrm{y}+3>0\) and \(\mathrm{y}(0)=2\), then \(\mathrm{y}(\log 2)\) is equal to. \(\begin{array}{ll}\text { (A) }-2 & \text { (B) } 5\end{array}\) (C) 7 (D) 13
Chapter 13: Problem 1144
If \((\mathrm{dy} / \mathrm{dx})=\mathrm{y}+3>0\) and \(\mathrm{y}(0)=2\), then \(\mathrm{y}(\log 2)\) is equal to. \(\begin{array}{ll}\text { (A) }-2 & \text { (B) } 5\end{array}\) (C) 7 (D) 13
All the tools & learning materials you need for study success - in one app.
Get started for freeSolution of \((\mathrm{y} / \mathrm{x}) \cos (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})-(\mathrm{y} / \mathrm{x})]\) \(+\sin (\mathrm{y} / \mathrm{x})[(\mathrm{dy} / \mathrm{dx})+(\mathrm{y} / \mathrm{x})]=0 ; \mathrm{y}(1)=(\pi / 2)\) is: (A) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 2 \mathrm{x})\) (B) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / \mathrm{x})\) (C) \(\mathrm{y} \sin (\mathrm{y} / \mathrm{x})=(\pi / 3 \mathrm{x})\) (D) none of these
If \(y=\left[x+\sqrt{ \left.\left(1+x^{2}\right)\right]^{n}}\right.\), then \(\left(1+x^{2}\right) \cdot\left(d^{2} y / d x^{2}\right)+x \cdot(d y / d x)\) - (A) - (B) \(2 \mathrm{x}^{2} \mathrm{y}\) (C) \(\mathrm{n}^{2} \mathrm{y}\) (D) \(-\mathrm{n}^{2} \mathrm{y}\)
The differential equation whose solution is \(\mathrm{Ax}^{2}+\mathrm{By}^{2}=1\), where \(\mathrm{A}\) and \(\mathrm{B}\) are arbitrary constants is of. (A) second order and second degree (B) first order and first degree (C) first order and second degree (D) second order and first degree
The solution of \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)=0\) represents: (A) a point (B) a straight line (C) a parabola (D) a circle
The differential equation of all circles passing through the origin and having their centers on the y-axis is: OR The differential equation for the family of curves \(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{ay}=0\), where a is an arbitrary constant is: (A) \(\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \mathrm{y}^{1}=2 \mathrm{xy}\) (B) \(2\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \mathrm{y}^{1}=\mathrm{xy}\) (C) \(2\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \mathrm{y}^{1}=\mathrm{xy}\) (D) \(\left(x^{2}+y^{2}\right) y^{1}=2 x y\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.