Chapter 13: Problem 1168
The general solution of \([\mathrm{x}(\mathrm{dy} / \mathrm{dx})-\mathrm{y}] \mathrm{e}^{(\mathrm{y} / \mathrm{x})}=\mathrm{x}^{2} \cos \mathrm{x}\) is: (A) \(\mathrm{e}^{(\mathrm{x} / \mathrm{y})}=\cos \mathrm{x}+\mathrm{c}\) (B) \(\mathrm{e}^{(\mathrm{x} / \mathrm{y})}=\sin \mathrm{x}+\mathrm{c}\) (C) \(e^{(y / x)}=\sin x+c\) (D) \(e^{(y / x)}=\cos x+c\)