The solution of the differential equation \((\mathrm{dy} / \mathrm{dx})=(\mathrm{y} / \mathrm{x})+\left[\\{\Phi(\mathrm{y} / \mathrm{x})\\} /\left\\{\Phi^{1}(\mathrm{y} / \mathrm{x})\right\\}\right]\) is: (A) \(\phi(\mathrm{y} / \mathrm{x})=\mathrm{kx}\) (B) \(\Phi(\mathrm{y} / \mathrm{x})=\mathrm{ky}\) (C) \(\mathrm{x} \cdot \Phi(\mathrm{y} / \mathrm{x})=\mathrm{k}\) (D) \(\mathrm{y} \cdot \Phi(\mathrm{y} / \mathrm{x})=\mathrm{k}\)

Short Answer

Expert verified
The short answer is: \(\boxed{\phi(\mathrm{y} / \mathrm{x})=\mathrm{kx}}\).

Step by step solution

01

Rewrite the differential equation

We are given the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\Phi(\frac{y}{x})}{\Phi'(\frac{y}{x})},\] where \(\Phi'(\frac{y}{x})\) represents the derivative of \(\Phi(\frac{y}{x})\) with respect to \(\frac{y}{x}\).
02

Separate variables

In order to separate the variables, we can rewrite the given equation as follows: \[\frac{dy}{dx} - \frac{y}{x} = \frac{\Phi(\frac{y}{x})}{\Phi'(\frac{y}{x})}.\] Now, let \(v = \frac{y}{x}\), meaning that \(y = xv\). Taking the derivative of \(y\) with respect to \(x\), we get \[\frac{dy}{dx} = x \frac{dv}{dx} + v.\] Substituting for \(\frac{dy}{dx}\) in the separated variables equation, we obtain \[x \frac{dv}{dx} + v - \frac{xv}{x} = \frac{\Phi(v)}{\Phi'(v)}.\] Simplifying the equation, we have \[x \frac{dv}{dx} = \frac{\Phi(v)}{\Phi'(v)}.\]
03

Integrate both sides

To solve for the relationship between \(y\) and \(x\), integrate both sides with respect to \(x\), noting that we are integrating for \(v\) on the right-hand side: \[\int x \frac{dv}{dx} dx = \int \frac{\Phi(v)}{\Phi'(v)} dv.\] Evaluating the integral, we get \[xv = \int \frac{\Phi(v)}{\Phi'(v)} dv + C,\] where \(C\) is the constant of integration.
04

Rewrite in terms of y and x and compare to the given choices

Recall that \(v = \frac{y}{x}\) and \(y = xv\). Thus, our found solution can be rewritten as \[y = x \int \frac{\Phi(\frac{y}{x})}{\Phi'(\frac{y}{x})} d\frac{y}{x} + Cx.\] Comparing this solution to the given choices, we find that choice (A) is in the form of our found solution: \[\boxed{\phi(\mathrm{y} / \mathrm{x})=\mathrm{kx}}.\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The solution of the differential equation \(\mathrm{ydx}+\left(\mathrm{x}+\mathrm{x}^{2} \mathrm{y}\right) \mathrm{dy}=0\) is: (A) \((1 / \mathrm{xy})+\log \mathrm{y}=\mathrm{c}\) (B) \(-(1 / x y)+\log y=c\) (C) \(-(1 / \mathrm{xy})=\mathrm{c}\) (D) \(\log \mathrm{y}=\mathrm{cx}\)

The general solution of \([\mathrm{x}(\mathrm{dy} / \mathrm{dx})-\mathrm{y}] \mathrm{e}^{(\mathrm{y} / \mathrm{x})}=\mathrm{x}^{2} \cos \mathrm{x}\) is: (A) \(\mathrm{e}^{(\mathrm{x} / \mathrm{y})}=\cos \mathrm{x}+\mathrm{c}\) (B) \(\mathrm{e}^{(\mathrm{x} / \mathrm{y})}=\sin \mathrm{x}+\mathrm{c}\) (C) \(e^{(y / x)}=\sin x+c\) (D) \(e^{(y / x)}=\cos x+c\)

The solution of \(\mathrm{y}^{5} \mathrm{x}+\mathrm{y}-\mathrm{x}(\mathrm{dy} / \mathrm{dx})=0\) is: (A) \((\mathrm{x} / \mathrm{y})^{5}+\left(\mathrm{x}^{4} / 4\right)=\mathrm{c}\) (B) \((\mathrm{xy})^{4}+\left(\mathrm{x}^{5} / 5\right)=\mathrm{c}\) (C) \(\left(x^{5} / 5\right)+(1 / 4)(x / y)^{4}=c\) (D) \(\left(x^{4} / y\right)+(1 / 5)(x / y)^{5}=c\)

The general solution of the equation \((d y / d x)=\left(x^{2} / y^{2}\right)\) is: (A) \(x^{3}+y^{3}=c\) (B) \(x^{3}-y^{3}=c\) (C) \(x^{2}+y^{2}=c\) (D) \(x^{2}-y^{2}=c\)

If \(\mathrm{m}\) and \(\mathrm{n}\) are order and degree of the equation \(\left(d^{2} y / d x^{2}\right)^{5}+4\left[\left(d^{2} y / d x^{2}\right)^{3} /\left(d^{3} y / d x^{3}\right)\right]+\left(d^{3} y / d x^{3}\right)=x^{2}-1\) then: (A) \(\mathrm{m}=3, \mathrm{n}=2\) (B) \(\mathrm{m}=3, \mathrm{n}=3\) (C) \(\mathrm{m}=3, \mathrm{n}=5\) (D) \(\mathrm{m}=3, \mathrm{n}=1\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free