Chapter 13: Problem 1189
If \(\sin (x+y)(d y / d x)=5\) then (A) \(5 \int[(\mathrm{dt}) /(5+\sin \mathrm{t})]=\mathrm{t}+\mathrm{x}(\) where \(\mathrm{t}=\mathrm{x}+\mathrm{y})\) (B) \(5 \int[(\mathrm{dt}) /(5+\sin \mathrm{t})]=\mathrm{t}-\mathrm{x}(\) where \(\mathrm{t}=\mathrm{x}+\mathrm{y})\) (C) \(\int[(\mathrm{dt}) /(5+\operatorname{cosec} \mathrm{t})]=\mathrm{d} \mathrm{x}(\) where \(\mathrm{t}=\mathrm{x}+\mathrm{y})\) (D) \(\int[(\mathrm{dt}) /(5 \sin t+1)]=\mathrm{dt}(\) where \(t=x+y)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.