The solution of the difference equation \((\mathrm{dy} / \mathrm{dx})=\left[1 /\left\\{\mathrm{xy}\left(\mathrm{x}^{2} \sin \mathrm{y}^{2}+1\right)\right\\}\right]\) is: (A) \(x^{2}\left(\cos y^{2}-\sin y^{2}-e^{-(y) 2}\right)=4\) (B) \(y^{2}\left(\cos y^{2}-\sin y^{2}-2 c e^{-(y) 2}\right)=2\) (C) \(x^{2}\left(\cos y^{2}-\sin y^{2}-2 c e^{-(y) 2}\right)=2\) (D) none of these

Short Answer

Expert verified
The solution of the difference equation \(\frac{dy}{dx} = \frac{1}{xy(x^2\sin y^2 + 1)}\) is: (D) none of these

Step by step solution

01

Separate the variables

We need to express the given differential equation in the form \(g(y) dy = h(x) dx\). To do this, we can rewrite the given equation as: \(dy = \frac{1}{y(x^2\sin y^2 + 1)} dx\) Now, the variables are separated.
02

Integrate both sides

Next, we integrate both sides with respect to their respective variables: \(\int dy = \int \frac{1}{y(x^2\sin y^2 + 1)} dx\) On the left side, the integral is straightforward: \(\int dy = y + C_1\) On the right side, since the integral is not elementary, let's denote it by a function F(x): \(\int \frac{1}{y(x^2\sin y^2 + 1)} dx = F(x) + C_2\)
03

Combine the constants and express the solution

We can combine the constants on both sides by writing \(C = C_1 - C_2\), leading to the general solution: \(y + C = F(x)\) But this first-order equation cannot be expressed in elementary functions, which prevents us from solving it completely.
04

Compare the result with the provided options

Since we cannot integrate without any simplification or substitution, we can infer from this that none of the options match the form we have above. Therefore, the answer is: (D) none of these

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Family of curves \(\mathrm{y}=\mathrm{e}^{\mathrm{x}}(\mathrm{A} \cos \mathrm{x}+\mathrm{B} \sin \mathrm{x})\) represents the differential equation: \(\quad\) (where \(\mathrm{A}\) and \(\mathrm{B}\) are arbitrary constant) (A) \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)-2(\mathrm{dy} / \mathrm{dx})+\mathrm{y}=0\) (B) \(\left(d^{2} y / d x^{2}\right)-2(d y / d x)-2 y=0\) (C) \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)-2(\mathrm{dy} / \mathrm{dx})-\mathrm{y}=0\) (D) \(\left(\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}\right)-2(\mathrm{dy} / \mathrm{dx})+2 \mathrm{y}=0\)

Solution of the differential equation \(\cos \mathrm{x} \cdot \mathrm{dy}\) \(=y(\sin x-y) d x, 0

The solution of the equation \(\left(d^{2} y / d x^{2}\right)=e^{-2 x}\) is: \(y=\) (A) \((1 / 4) \mathrm{e}^{-2 \mathrm{x}}+\mathrm{cx}+\mathrm{d}\) (B) \((1 / 4) e^{-2 \mathrm{x}}\) (C) \((1 / 4) e^{-2 x}+c x^{2}+d\) (D) \((1 / 4) e^{-2 x}+c x+d\)

If \(\mathrm{m}\) and \(\mathrm{n}\) are order and degree of the equation \(\left(d^{2} y / d x^{2}\right)^{5}+4\left[\left(d^{2} y / d x^{2}\right)^{3} /\left(d^{3} y / d x^{3}\right)\right]+\left(d^{3} y / d x^{3}\right)=x^{2}-1\) then: (A) \(\mathrm{m}=3, \mathrm{n}=2\) (B) \(\mathrm{m}=3, \mathrm{n}=3\) (C) \(\mathrm{m}=3, \mathrm{n}=5\) (D) \(\mathrm{m}=3, \mathrm{n}=1\)

A particular solution of \(\log (d y / d x)=3 x+4 y, y(0)=0\) is: (A) \(3 \mathrm{e}^{3 \mathrm{x}}+4 \mathrm{e}^{4 \mathrm{y}}=7\) (B) \(4 \mathrm{e}^{3 \mathrm{x}}-\mathrm{e}^{-4 \mathrm{y}}=3\) (C) \(\mathrm{e}^{3 \mathrm{x}}+3 \mathrm{e}^{-4 \mathrm{y}}=4\) (D) \(4 \mathrm{e}^{3 \mathrm{x}}+3 \mathrm{e}^{-4 \mathrm{y}}=7\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free