Chapter 14: Problem 1199
The equation of line containing the angle bisector of the lines \(3 x-4 y-2=0\) and \(5 x-12 y+2=0\) is ....... (a) \(7 x+4 y-18=0\) (b) \(4 x-7 y-1=0\) (c) \(4 \mathrm{x}-7 \mathrm{y}+1=0\) (d) None of these
Chapter 14: Problem 1199
The equation of line containing the angle bisector of the lines \(3 x-4 y-2=0\) and \(5 x-12 y+2=0\) is ....... (a) \(7 x+4 y-18=0\) (b) \(4 x-7 y-1=0\) (c) \(4 \mathrm{x}-7 \mathrm{y}+1=0\) (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe line \(3 \mathrm{x}-4 \mathrm{y}+7=0\) is rotated through an angle \((\pi / 4)\) in the clockwise direction about the point \((-1,1)\). The equation of the line in its new position is (a) \(7 \mathrm{y}+\mathrm{x}-6=0\) (b) \(7 \mathrm{y}-\mathrm{x}-6=0\) (c) \(7 \mathrm{y}+\mathrm{x}+6=0\) (d) \(7 \mathrm{y}-\mathrm{x}+6=0\)
The y-intercept of the line passing through the point \((2,2)\) and perpendicular to the line \(3 \mathrm{x}+\mathrm{y}-3=0\) is \(\ldots \ldots\) (a) \((3 / 4)\) (b) \((4 / 3)\) (c) \(-(4 / 3)\) (d) \(-(3 / 4)\)
Line \(\mathrm{ax}+\mathrm{by}+\mathrm{p}=0\) makes angle \((\pi / 4)\) with \(x \cos \alpha+\) ysin \(\alpha=p, p \in R^{+} .\) If these lines and the line \(x \sin \alpha-y \cos \alpha=0\) are concurrent then (a) \(a^{2}+b^{2}=p^{2}\) (b) \(a^{2}+b^{2}=2 p^{2}\) (c) \(2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=\mathrm{p}\) (d) \(a^{2}-b^{2}=2 p^{2}\)
\(\mathrm{A}(-2,5), \mathrm{B}(6,2)\), then \(\underline{\mathrm{AB}}-\underline{\mathrm{AB}}=\ldots \ldots \ldots\) (a) \([(8 t-2,5-3 t) /(t<0)]\) (b) \([(8 t-2,5-3 t) /(0 \leq t \leq 1)]\) (c) \([(8 \mathrm{t}-2,5-3 \mathrm{t}) /\\{\mathrm{t} \in \mathrm{R}-[0,1]\\}]\) (d) \([(8 t-2,5-3 t) /(t>1)]\)
The circumcentre of the triangle formed by the lines \(\mathrm{x}+\mathrm{y}=0, \mathrm{x}-\mathrm{y}=0\) and \(\mathrm{x}-7=0\) is \(\ldots \ldots\) (a) \((7,0)\) (b) \((3.5,0)\) (c) \((0,7)\) (d) \((3.5,3.5)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.