Chapter 14: Problem 1199
The equation of line containing the angle bisector of the lines \(3 x-4 y-2=0\) and \(5 x-12 y+2=0\) is ....... (a) \(7 x+4 y-18=0\) (b) \(4 x-7 y-1=0\) (c) \(4 \mathrm{x}-7 \mathrm{y}+1=0\) (d) None of these
Chapter 14: Problem 1199
The equation of line containing the angle bisector of the lines \(3 x-4 y-2=0\) and \(5 x-12 y+2=0\) is ....... (a) \(7 x+4 y-18=0\) (b) \(4 x-7 y-1=0\) (c) \(4 \mathrm{x}-7 \mathrm{y}+1=0\) (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeLocus of the centroid of the triangle whose vertices are (acost, asint), (bsint, - bcost) and \((1,0)\), where \(t\) is a parameter is (a) \((3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}\) (b) \((3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}\) (c) \((3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}\) (d) \((3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}\)
If \(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\) and \(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\) both are in GP with the same common ratio, then the points \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\) and \(\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)\) (a) lie on a straight line (b) lie on a ellipse (c) lie on a circle (d) are vertices of a triangle
Find the equation of line making a triangle of area \((50 / \sqrt{3})\) units with two axes and on which a perpendicular from origin makes an angle \((\pi / 6)\) with positive direction of \(\mathrm{x}\) -axis. (a) \(x+\sqrt{3 y}=10\) (b) \(x-y=10\) (c) \(\sqrt{3} x+y-5=0\) (d) \(\sqrt{3 x}+y-10=0\)
If \(\mathrm{P}(-1,0), \mathrm{Q}(0,0)\) and \(\mathrm{R}(3,3 \sqrt{3})\), then the equation of bisector of \(\angle P Q R\) is \(\ldots \ldots .\) (a) \((\sqrt{3} / 2) \mathrm{x}+\mathrm{y}=0\) (b) \(x+(\sqrt{3} / 2) y=0\) (c) \(\sqrt{3 x+y}=0\) (d) \(x+\sqrt{3} y=0\)
The y-intercept of the line passing through the point \((2,2)\) and perpendicular to the line \(3 \mathrm{x}+\mathrm{y}-3=0\) is \(\ldots \ldots\) (a) \((3 / 4)\) (b) \((4 / 3)\) (c) \(-(4 / 3)\) (d) \(-(3 / 4)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.