Chapter 14: Problem 1210
If the length of perpendicular drawn from \((5,0)\) on \(\mathrm{kx}+4 \mathrm{y}=20\) is 1, then \(\mathrm{k}=\ldots \ldots \ldots\) (a) \(3,(16 / 3)\) (b) \(3,-(16 / 3)\) (c) \(-3,(16 / 3)\) (d) \(-3,-(16 / 3)\)
Chapter 14: Problem 1210
If the length of perpendicular drawn from \((5,0)\) on \(\mathrm{kx}+4 \mathrm{y}=20\) is 1, then \(\mathrm{k}=\ldots \ldots \ldots\) (a) \(3,(16 / 3)\) (b) \(3,-(16 / 3)\) (c) \(-3,(16 / 3)\) (d) \(-3,-(16 / 3)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\) and \(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\) both are in GP with the same common ratio, then the points \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\) and \(\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)\) (a) lie on a straight line (b) lie on a ellipse (c) lie on a circle (d) are vertices of a triangle
Consider a square OPQR having the length of side a, where \(\mathrm{O}(0,0)\). The sides \(\underline{\mathrm{OP}}\) and \(\underline{\mathrm{OR}}\) are along the positive \(\mathrm{X}\) -axis and Y-axis respectively. If \(\mathrm{A}\) and \(\mathrm{B}\) are the mid points of \(\underline{\mathrm{PQ}}\) and \(Q \underline{R}\) respectively, then the angle between \(\underline{\mathrm{OA}}\) and \(\underline{\mathrm{OB}}\) would be \(\ldots \ldots \ldots\) (a) \(\cos ^{-1}(3 / 5)\) (b) \(\tan ^{-1}(4 / 3)\) (c) \(\cos ^{-1}(3 / 4)\) (d) \(\sin ^{-1}(3 / 5)\)
The y-intercept of the line passing through the point \((2,2)\) and perpendicular to the line \(3 \mathrm{x}+\mathrm{y}-3=0\) is \(\ldots \ldots\) (a) \((3 / 4)\) (b) \((4 / 3)\) (c) \(-(4 / 3)\) (d) \(-(3 / 4)\)
If \(2 \mathrm{x}+2 \mathrm{y}-5=0\) is the equation of the line containing one of the sides of an equilateral triangle and \((1,2)\) is one vertex, then find the equations of the lines containing the other two sides. (a) \(\mathrm{y}=(2+\sqrt{3}) \mathrm{x}-\sqrt{3}, \mathrm{y}=(2+\sqrt{3}) \mathrm{x}+\sqrt{3}\) (b) \(y=(2-\sqrt{3}) x-\sqrt{3}, y=(2+\sqrt{3}) x+\sqrt{3}\) (c) \(y=(2-\sqrt{3}) x+\sqrt{3}, y=(2+\sqrt{3}) x-\sqrt{3}\) (d) \(y=(2+\sqrt{3}) x+\sqrt{3}, y=(2+\sqrt{3}) x-\sqrt{3}\)
If \(\mathrm{P}(-1,0), \mathrm{Q}(0,0)\) and \(\mathrm{R}(3,3 \sqrt{3})\) are given points, then the equation of the bisector of \(\angle P Q R\) is \(\ldots \ldots\) (a) \((\sqrt{3} / 2) \mathrm{x}+\mathrm{y}=0\) (b) \(x+(\sqrt{3} / 2) \mathrm{y}=0\) (c) \(\sqrt{3 x}+\mathrm{y}=0\) (d) \(x+\sqrt{3} y=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.