Chapter 14: Problem 1223
If \(\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\) and \(\mathrm{P}\left(\mathrm{tx}_{2}+(1-\mathrm{t}) \mathrm{x}_{1}, \mathrm{t}_{2}+(1-\mathrm{t}) \mathrm{y}_{1}\right)\) where \(t<0\), then P divides \(\underline{A B}\) from \(A\) in the ratio \(\ldots \ldots\) (a) \(1-\mathrm{t}\) (b) \([(\mathrm{t}-1) / \mathrm{t}]\) (c) \([t /(1-t)]\) (d) \(t-1\)