Chapter 14: Problem 1225
\(\mathrm{A}(2,3), \mathrm{B}(4,7)\) and \(\mathrm{P}(\mathrm{x}, \mathrm{y}) \in \underline{\mathrm{AB}}\), then the maximum value of \(3 \mathrm{x}+\mathrm{y}\) is \(\ldots \ldots\) (a) 19 (b) 9 (c) \(-19\) (d) \(-9\)
Chapter 14: Problem 1225
\(\mathrm{A}(2,3), \mathrm{B}(4,7)\) and \(\mathrm{P}(\mathrm{x}, \mathrm{y}) \in \underline{\mathrm{AB}}\), then the maximum value of \(3 \mathrm{x}+\mathrm{y}\) is \(\ldots \ldots\) (a) 19 (b) 9 (c) \(-19\) (d) \(-9\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFor the collinear points \(\mathrm{P}-\mathrm{A}-\mathrm{B}, \mathrm{AP}=4 \mathrm{AB}\), then \(\mathrm{P}\) divides AB from \(\mathrm{A}\) in the ratio \(\ldots \ldots .\) (a) \(4: 5\) (b) \(-4: 5\) (c) \(-5: 4\) (d) \(-1: 4\)
A rod having length \(2 \mathrm{c}\) moves along two perpendicular lines, then the locus of the midpoint of the rod is \(\ldots \ldots\) (a) \(x^{2}-y^{2}=c^{2}\) (b) \(x^{2}+y^{2}=c^{2}\) (c) \(x^{2}+y^{2}=2 c^{2}\) (d) None of these
A straight line passes through a point \(\mathrm{A}(1,2)\) and makes an angle \(60^{\circ}\) with the \(\mathrm{x}\) -axis. This line intersect the line \(\mathrm{x}+\mathrm{y}=6\) at \(\mathrm{P}\). Then AP will be (a) \(3(\sqrt{3}+1)\) (b) \(3(\sqrt{3}-1)\) (c) \((\sqrt{3}+1)\) (d) \(3 \sqrt{3}\)
The equations of the two lines each passing through \((5,6)\) and each making an acute angle of \(45^{\circ}\) with the line \(2 \mathrm{x}-\mathrm{y}+1=0\) is (a) \(3 x+y-21=0, x-3 y+13=0\) (b) \(3 x+y+21=0, x+3 y+13=0\) (c) \(y=2 x, y=3 x\) (d) \(3 \mathrm{x}+\mathrm{y}-21=0, \mathrm{x}-3 \mathrm{y}-13=0\)
In triangle \(\mathrm{ABC}\), equation of right bisectors of the sides \(\underline{A B}\) and \(\underline{A C}\) are \(x+y=0\) and \(y-x=0\) respectively. If \(\mathrm{A}=(5,7)\) then equation of side \(\mathrm{BC}\) is (a) \(7 \mathrm{y}=5 \mathrm{x}\) (b) \(5 x=y\) (c) \(5 \mathrm{y}=7 \mathrm{x}\) (d) \(5 \mathrm{y}=\mathrm{x}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.