Chapter 14: Problem 1225
\(\mathrm{A}(2,3), \mathrm{B}(4,7)\) and \(\mathrm{P}(\mathrm{x}, \mathrm{y}) \in \underline{\mathrm{AB}}\), then the maximum value of \(3 \mathrm{x}+\mathrm{y}\) is \(\ldots \ldots\) (a) 19 (b) 9 (c) \(-19\) (d) \(-9\)
Chapter 14: Problem 1225
\(\mathrm{A}(2,3), \mathrm{B}(4,7)\) and \(\mathrm{P}(\mathrm{x}, \mathrm{y}) \in \underline{\mathrm{AB}}\), then the maximum value of \(3 \mathrm{x}+\mathrm{y}\) is \(\ldots \ldots\) (a) 19 (b) 9 (c) \(-19\) (d) \(-9\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{A}(2,-3)\) and \(\mathrm{B}(-2,1)\) be vertices of a triangle \(\mathrm{ABC}\). If the centroid of this triangle moves on the line \(2 x+3 y=1\), then locus of the vertex \(\mathrm{C}\) is the line (a) \(2 \mathrm{x}+3 \mathrm{y}=9\) (b) \(2 x-3 y=7\) (c) \(3 \mathrm{x}+2 \mathrm{y}=5\) (d) \(3 x-2 y=3\)
For a \(+b+c=0\), the line \(3 \mathrm{ax}+4 \mathrm{by}+\mathrm{c}=0\) passes through the fixed point \(\ldots \ldots .\) (a) \([(1 / 3),-(1 / 4)]\) (b) \([-(1 / 3),(1 / 4)]\) (c) \([(1 / 3),(1 / 4)]\) (d) \([-(1 / 3),-(1 / 4)]\)
If the lengths of perpendicular drawn from the origin to the lines \(x \cos \alpha-y \sin \alpha=\sin 2 a \alpha\) and \(x \sin \alpha+y \cos \alpha=\cos 2 \alpha\) are \(p\) and \(q\) respectively, then \(p^{2}+q^{2}=\ldots \ldots\) (a) 4 (b) 3 (c) 2 (d) 1
The y-intercept of the line \(\mathrm{y}+\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)\) is \(\ldots \ldots\) (a) \(-\left(\mathrm{y}_{1}+\mathrm{mx}_{1}\right)\) (b) \(\mathrm{y}_{1}-\mathrm{mx}_{1}\) (c) \(\left[\left(\mathrm{y}_{1}+\mathrm{mx}_{1}\right) / \mathrm{m}\right]\) (d) None of these
If \(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\) and \(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\) are in geometric progression and their common ratios are equal, then the points \(\mathrm{A}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)\) \(\mathrm{B}\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)\) and \(\mathrm{C}\left(\mathrm{a}_{3}, \mathrm{~b}_{3}\right) \ldots \ldots\) (a) lie on the same line (b) lie on a circle (c) lie on an ellipse (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.