Chapter 14: Problem 1233
The angle between the lines \(x \cos 85^{\circ}+y \sin 85^{\circ}=1\) and \(x \cos 40^{\circ}+y \sin 40^{\circ}=2\) is : (a) \(90^{\circ}\) (b) \(80^{\circ}\) (c) \(125^{\circ}\) (d) \(45^{\circ}\)
Chapter 14: Problem 1233
The angle between the lines \(x \cos 85^{\circ}+y \sin 85^{\circ}=1\) and \(x \cos 40^{\circ}+y \sin 40^{\circ}=2\) is : (a) \(90^{\circ}\) (b) \(80^{\circ}\) (c) \(125^{\circ}\) (d) \(45^{\circ}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the line \((a+1) x+\left(a^{2}-a-2\right) y+a=0\) is parallel to \(Y-\) axis, then \(\mathrm{a}=\ldots \ldots\) (a) - 1 (b) 2 (c) 3 (d) 1
For any values of \(\mathrm{p}\) and \(\mathrm{q}\), the line \((p+2 q) x+(p-3 q) y-p+q\) passes through which fixed point? (a) \([(3 / 2),(5 / 2)]\) (b) \([(2 / 5),(2 / 5)]\) (c) \([(3 / 5) /(3 / 5)]\) (d) \([(2 / 5),(3 / 5)]\)
If the \(\mathrm{y}\) -intercept of the perpendicular bisector of the segment obtained by joining \(\mathrm{P}(1,4)\) and \(\mathrm{Q}(\mathrm{k}, 3)\) is \(-4\) then \(\mathrm{k}=\ldots \ldots\) (a) 1 (b) 2 (c) \(-2\) (d) \(-4\)
The foot of perpendicular drawn from \((2,3)\) to the line \(4 x-5 y-34=0\) is ..... (a) \((6,-2)\) (b) \([(246 / 41),(82 / 41)]\) (c) \((-6,2)\) (d) None of these
If the equation of base of an equilateral triangle is \(2 \mathrm{x}-\mathrm{y}=1\) and the vertex is \((-1,2)\), then the length of the side of the triangle is (a) \(\sqrt{(20 / 3)}\) (b) \((2 / \sqrt{1} 5)\) (c) \(\sqrt{(8 / 15)}\) (d) \(\sqrt{(15 / 2)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.