Chapter 14: Problem 1233
The angle between the lines \(x \cos 85^{\circ}+y \sin 85^{\circ}=1\) and \(x \cos 40^{\circ}+y \sin 40^{\circ}=2\) is : (a) \(90^{\circ}\) (b) \(80^{\circ}\) (c) \(125^{\circ}\) (d) \(45^{\circ}\)
Chapter 14: Problem 1233
The angle between the lines \(x \cos 85^{\circ}+y \sin 85^{\circ}=1\) and \(x \cos 40^{\circ}+y \sin 40^{\circ}=2\) is : (a) \(90^{\circ}\) (b) \(80^{\circ}\) (c) \(125^{\circ}\) (d) \(45^{\circ}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThree straight lines \(2 \mathrm{x}+11 \mathrm{y}-5=0,4 \mathrm{x}-3 \mathrm{y}-2=0\) and \(24 x+7 y-20=0\) (a) form a triangle (b) are only concurrent (c) are concurrent with one line bisecting the angle between the other two. (d) none of these
A straight line passes through a point \(\mathrm{A}(1,2)\) and makes an angle \(60^{\circ}\) with the \(\mathrm{x}\) -axis. This line intersect the line \(\mathrm{x}+\mathrm{y}=6\) at \(\mathrm{P}\). Then AP will be (a) \(3(\sqrt{3}+1)\) (b) \(3(\sqrt{3}-1)\) (c) \((\sqrt{3}+1)\) (d) \(3 \sqrt{3}\)
The nearest point on the line \(3 \mathrm{x}+4 \mathrm{y}=1\) from origin is (a) \([(7 / 25),(4 / 25)]\) (b) \([(7 / 25),(2 / 25)]\) (c) \([(3 / 25),(4 / 25)]\) (d) \([(1 / 25),(3 / 25)]\)
\(\mathrm{A}(1,0)\) and \(\mathrm{B}(-1,0)\), then the locus of points satisfying \(\mathrm{AQ}-\mathrm{BQ}=\pm 1\) is \(\ldots \ldots\) (a) \(12 \mathrm{x}^{2}+4 \mathrm{y}^{2}=3\) (b) \(12 \mathrm{x}^{2}-4 \mathrm{y}^{2}=3\) (c) \(12 \mathrm{x}^{2}-4 \mathrm{y}^{2}=-3\) (d) \(12 x^{2}+4 y^{2}=-3\)
If \(\mathrm{P}(-1,0), \mathrm{Q}(0,0)\) and \(\mathrm{R}(3,3 \sqrt{3})\), then the equation of bisector of \(\angle P Q R\) is \(\ldots \ldots .\) (a) \((\sqrt{3} / 2) \mathrm{x}+\mathrm{y}=0\) (b) \(x+(\sqrt{3} / 2) y=0\) (c) \(\sqrt{3 x+y}=0\) (d) \(x+\sqrt{3} y=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.