Four points \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2},
\mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)\) and
\(\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)\) are such that
\({ }^{4}
\sum_{\mathrm{i}=1}\left(\mathrm{x}_{\mathrm{i}}^{2}+\mathrm{y}_{\mathrm{i}}^{2}\right)
\leq 2\left(\mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{x}_{2}
\mathrm{x}_{4}+\mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{y}_{3}
\mathrm{y}_{4}\right)\). Then these
points are vertices of
(a) Parallelogram
(b) Rectangle
(c) Square
(d) Rhombus