Chapter 14: Problem 1259
If \((3,-2)\) and \((-2,3)\) are two vertices and \((6,-1)\) is the orthocenter of a triangle, then the third vertex would be \(\ldots \ldots\) (a) \((1,6)\) (b) \((-1,6)\) (c) \((1,-6)\) (d) none of these
Chapter 14: Problem 1259
If \((3,-2)\) and \((-2,3)\) are two vertices and \((6,-1)\) is the orthocenter of a triangle, then the third vertex would be \(\ldots \ldots\) (a) \((1,6)\) (b) \((-1,6)\) (c) \((1,-6)\) (d) none of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe line \(3 \mathrm{x}-4 \mathrm{y}+7=0\) is rotated through an angle \((\pi / 4)\) in the clockwise direction about the point \((-1,1)\). The equation of the line in its new position is (a) \(7 \mathrm{y}+\mathrm{x}-6=0\) (b) \(7 \mathrm{y}-\mathrm{x}-6=0\) (c) \(7 \mathrm{y}+\mathrm{x}+6=0\) (d) \(7 \mathrm{y}-\mathrm{x}+6=0\)
The length of side of an equilateral triangle is a. There is circle inscribed in a triangle. What is the area of a square inscribed in a circle ? (a) \(\left(\mathrm{a}^{2} / 3\right)\) (b) \(\left(\mathrm{a}^{2} / 6\right)\) (c) \(\left(\mathrm{a}^{2} / \sqrt{3}\right)\) (d) \(\left(a^{2} / \sqrt{2}\right)\)
The locus of mid points of the segment intercepted between the axes by the line xseca \(+\) ytana \(=p\) is \(\ldots \ldots\) (a) \(\left[\mathrm{p}^{2} /\left(4 \mathrm{x}^{2}\right)\right]=1+\left[\mathrm{p}^{2} /\left(4 \mathrm{y}^{2}\right)\right]\) (b) \(\left(\mathrm{x}^{2} / \mathrm{p}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{p}^{2}\right)=4\) (c) \(\left(\mathrm{p}^{2} / \mathrm{x}^{2}\right)=1+\left(\mathrm{p}^{2} / \mathrm{y}^{2}\right)\) (d) \(\left[\mathrm{p}^{2} /\left(4 \mathrm{x}^{2}\right)\right]+\left[\mathrm{p}^{2} /\left(4 \mathrm{y}^{2}\right)\right]=1\)
The equation of line containing the angle bisector of the lines \(3 x-4 y-2=0\) and \(5 x-12 y+2=0\) is ....... (a) \(7 x+4 y-18=0\) (b) \(4 x-7 y-1=0\) (c) \(4 \mathrm{x}-7 \mathrm{y}+1=0\) (d) None of these
Let \(\mathrm{A}(2,-3)\) and \(\mathrm{B}(-2,1)\) be vertices of a triangle \(\mathrm{ABC}\). If the centroid of this triangle moves on the line \(2 x+3 y=1\), then locus of the vertex \(\mathrm{C}\) is the line (a) \(2 \mathrm{x}+3 \mathrm{y}=9\) (b) \(2 x-3 y=7\) (c) \(3 \mathrm{x}+2 \mathrm{y}=5\) (d) \(3 x-2 y=3\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.