Chapter 14: Problem 1260
The circumcentre of the triangle formed by the lines \(\mathrm{x}+\mathrm{y}=0, \mathrm{x}-\mathrm{y}=0\) and \(\mathrm{x}-7=0\) is \(\ldots \ldots\) (a) \((7,0)\) (b) \((3.5,0)\) (c) \((0,7)\) (d) \((3.5,3.5)\)
Chapter 14: Problem 1260
The circumcentre of the triangle formed by the lines \(\mathrm{x}+\mathrm{y}=0, \mathrm{x}-\mathrm{y}=0\) and \(\mathrm{x}-7=0\) is \(\ldots \ldots\) (a) \((7,0)\) (b) \((3.5,0)\) (c) \((0,7)\) (d) \((3.5,3.5)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{A}(2,-3)\) and \(\mathrm{B}(-2,1)\) be vertices of a triangle \(\mathrm{ABC}\). If the centroid of this triangle moves on the line \(2 x+3 y=1\), then locus of the vertex \(\mathrm{C}\) is the line (a) \(2 \mathrm{x}+3 \mathrm{y}=9\) (b) \(2 x-3 y=7\) (c) \(3 \mathrm{x}+2 \mathrm{y}=5\) (d) \(3 x-2 y=3\)
In triangle \(\mathrm{ABC}\), equation of right bisectors of the sides \(\underline{A B}\) and \(\underline{A C}\) are \(x+y=0\) and \(y-x=0\) respectively. If \(\mathrm{A}=(5,7)\) then equation of side \(\mathrm{BC}\) is (a) \(7 \mathrm{y}=5 \mathrm{x}\) (b) \(5 x=y\) (c) \(5 \mathrm{y}=7 \mathrm{x}\) (d) \(5 \mathrm{y}=\mathrm{x}\)
If \((3,-2)\) and \((-2,3)\) are two vertices and \((6,-1)\) is the orthocenter of a triangle, then the third vertex would be \(\ldots \ldots\) (a) \((1,6)\) (b) \((-1,6)\) (c) \((1,-6)\) (d) none of these
Shifting origin at which point the transformed form of \(\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-8 \mathrm{y}-85=0\) would be \(\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{k}\) ? (a) \((2,4)\) (b) \((-2,-4)\) (c) \((2,-4)\) (d) \((-2,4)\)
If the \(\mathrm{x}\) -coordinate of the point of intersection of the lines \(3 \mathrm{x}+4 \mathrm{y}=9\) and \(\mathrm{y}=\mathrm{mx}+1\) is an integer, then the integer value of \(\mathrm{m}\) is \(\ldots \ldots\) (a) 2 (b) 0 (c) 4 (d) 1
What do you think about this solution?
We value your feedback to improve our textbook solutions.