Chapter 14: Problem 1260
The circumcentre of the triangle formed by the lines \(\mathrm{x}+\mathrm{y}=0, \mathrm{x}-\mathrm{y}=0\) and \(\mathrm{x}-7=0\) is \(\ldots \ldots\) (a) \((7,0)\) (b) \((3.5,0)\) (c) \((0,7)\) (d) \((3.5,3.5)\)
Chapter 14: Problem 1260
The circumcentre of the triangle formed by the lines \(\mathrm{x}+\mathrm{y}=0, \mathrm{x}-\mathrm{y}=0\) and \(\mathrm{x}-7=0\) is \(\ldots \ldots\) (a) \((7,0)\) (b) \((3.5,0)\) (c) \((0,7)\) (d) \((3.5,3.5)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the lengths of perpendicular drawn from the origin to the lines \(x \cos \alpha-y \sin \alpha=\sin 2 a \alpha\) and \(x \sin \alpha+y \cos \alpha=\cos 2 \alpha\) are \(p\) and \(q\) respectively, then \(p^{2}+q^{2}=\ldots \ldots\) (a) 4 (b) 3 (c) 2 (d) 1
If the point \([1+(t / \sqrt{2}), 2+(t / \sqrt{2})]\) lies between the two
parallel lines \(x+2 y=1\) and \(2 x+4 y=15\), then the range of \(t\) is \(\ldots
\ldots\)
(a) \(0
If \(5 \mathrm{x}+12 \mathrm{y}+13=0\) is transformed into \(x \cos \alpha+\mathrm{ysin} \alpha=\mathrm{p}\) then \(\alpha=? \alpha \in[-\pi, \pi]\) (a) \(\cos ^{-1}[-(5 / 13)]\) (b) \(\sin ^{-1}[-(12 / 13)]\) (c) \(\tan ^{-1}(12 / 5)-\pi\) (d) \(\tan ^{-1}(12 / 5)\)
The equation of line passing through the point \((-5,4)\) and making the intercept of length \((2 / \sqrt{5})\) between the lines \(x+2 y-1=0\) and \(x+2 y+1=0\) is \(\ldots \ldots\) (a) \(2 \mathrm{x}-\mathrm{y}+4=0\) (b) \(2 x-y-14=0\) (c) \(2 \mathrm{x}-\mathrm{y}+14=0\) (d) None of these
The straight line \(7 \mathrm{x}-2 \mathrm{y}+10=0\) and \(7 \mathrm{x}+2 \mathrm{y}-10=0\) forms an isosceles triangle with the line \(\mathrm{y}=2\). Area of the triangle is equal to : (a) \((15 / 7)\) sq unit (b) \((10 / 7)\) sq unit (c) \((18 / 7)\) sq unit (d) \((10 / 13)\) sq unit
What do you think about this solution?
We value your feedback to improve our textbook solutions.