Chapter 14: Problem 1263
The angle between the lines \(\mathrm{x}=3\) and \(\sqrt{3} \mathrm{x}-\mathrm{y}+5=0\) is \(\ldots \ldots\) (a) \((\pi / 6)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
Chapter 14: Problem 1263
The angle between the lines \(\mathrm{x}=3\) and \(\sqrt{3} \mathrm{x}-\mathrm{y}+5=0\) is \(\ldots \ldots\) (a) \((\pi / 6)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe equation of the lines with slope \(-2\) and intersecting \(\mathrm{x}\) -axis at points distance 3 unit from the origin is...... (a) \(2 \mathrm{x}+\mathrm{y} \pm 6=0\) (b) \(x+2 y \pm 6=0\) (c) \(2 \mathrm{x}+\mathrm{y} \pm 3=0\) (d) \(x+2 y \pm 3=0\)
If \(\mathrm{P}(-1,0), \mathrm{Q}(0,0)\) and \(\mathrm{R}(3,3 \sqrt{3})\), then the equation of bisector of \(\angle P Q R\) is \(\ldots \ldots .\) (a) \((\sqrt{3} / 2) \mathrm{x}+\mathrm{y}=0\) (b) \(x+(\sqrt{3} / 2) y=0\) (c) \(\sqrt{3 x+y}=0\) (d) \(x+\sqrt{3} y=0\)
The equation of a line passing through \((4,3)\) and the sum of whose intercepts is \(-1\) is........ (a) \((\mathrm{x} / 2)+(\mathrm{y} / 3)=1,(\mathrm{x} / 2)+(\mathrm{y} / 1)]=1\) (b) \((\mathrm{x} / 2)+(\mathrm{y} / 3)=-1,[\mathrm{x} /(-2)]+(\mathrm{y} / 1)=1\) (c) \((\mathrm{x} / 2)+(\mathrm{y} / 3)=-1,\\{\mathrm{x} /(-2)\\}+(\mathrm{y} / 1)=-1\) (d) \((\mathrm{x} / 2)-(\mathrm{y} / 3)=1,\\{\mathrm{x} /(-2)\\}+(\mathrm{y} / 1)=1\)
The angle between the lines \(\\{(\mathrm{x}, 0) /(\mathrm{x} \in \mathrm{R})\\}\) and \(\\{(0, y) /(y \in R)\\}\) is \(\ldots \ldots\) (a) \((\pi / 2)\) (b) \(-(\pi / 2)\) (c) 0 (d) \(\pi\)
Shifting origin at which point the transformed form of \(\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-8 \mathrm{y}-85=0\) would be \(\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{k}\) ? (a) \((2,4)\) (b) \((-2,-4)\) (c) \((2,-4)\) (d) \((-2,4)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.