Chapter 14: Problem 1275
The image of origin in the line \(\mathrm{x}+4 \mathrm{y}=1 \mathrm{is}\) (a) \([(2 / 17),-(8 / 17)]\) (b) \([-(2 / 17),-(8 / 17)]\) (c) \([-(2 / 17),(8 / 17)]\) (d) \([(2 / 17),(8 / 17)]\)
Chapter 14: Problem 1275
The image of origin in the line \(\mathrm{x}+4 \mathrm{y}=1 \mathrm{is}\) (a) \([(2 / 17),-(8 / 17)]\) (b) \([-(2 / 17),-(8 / 17)]\) (c) \([-(2 / 17),(8 / 17)]\) (d) \([(2 / 17),(8 / 17)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(2 \mathrm{x}+3 \mathrm{y}=8\) is perpendicular to the line \((\mathrm{x}+\mathrm{y}+1)+\lambda(2 \mathrm{x}-\mathrm{y}-1)=0\), then \(\lambda=?\) (a) \(-5\) (b) \((3 / 2)\) (c) 5 (d) 0
A line passing through \(0(0,0)\) intersect the parallel lines \(4 x+2 y=0\) and \(2 x+y+6=0\) at \(P\) and \(Q\) respectively, then in what ratio does 0 divide \(\underline{\text { PQ from }} \mathrm{P}\) ? (a) \(1: 2\) (b) \(3: 4\) (c) \(2: 1\) (d) \(4: 3\)
The nearest point on the line \(\mathrm{x}-3 \mathrm{y}+25=0\) from the origin is \(\ldots \ldots\) (a) \((-4,5)\) (b) \((-4,3)\) (c) \((4,3)\) (d) None of these
If a line \(3 \mathrm{x}+4 \mathrm{y}=24\) intersects the axes at \(\mathrm{A}\) and \(\mathrm{B}\), then in radius of \(\Delta \mathrm{OAB}\) is \(\ldots \ldots\) (a) 1 (b) 2 (c) 3 (d) 4
The sum of squares of intercepts on the axes cut off by the tangents to the curve \(\mathrm{x}^{(2 / 3)}+\mathrm{y}(2 / 3)=\mathrm{a}^{(2 / 3)}(\mathrm{a}>0)\) at \([(\mathrm{a} / 8),(\mathrm{a} / 8)]\) is \(2 .\) Thus a has the value. (a) 1 (b) 2 (c) 4 (d) 8
What do you think about this solution?
We value your feedback to improve our textbook solutions.