Chapter 14: Problem 1275
The image of origin in the line \(\mathrm{x}+4 \mathrm{y}=1 \mathrm{is}\) (a) \([(2 / 17),-(8 / 17)]\) (b) \([-(2 / 17),-(8 / 17)]\) (c) \([-(2 / 17),(8 / 17)]\) (d) \([(2 / 17),(8 / 17)]\)
Chapter 14: Problem 1275
The image of origin in the line \(\mathrm{x}+4 \mathrm{y}=1 \mathrm{is}\) (a) \([(2 / 17),-(8 / 17)]\) (b) \([-(2 / 17),-(8 / 17)]\) (c) \([-(2 / 17),(8 / 17)]\) (d) \([(2 / 17),(8 / 17)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe nearest point on the line \(\mathrm{x}-3 \mathrm{y}+25=0\) from the origin is \(\ldots \ldots\) (a) \((-4,5)\) (b) \((-4,3)\) (c) \((4,3)\) (d) None of these
The equation of the bisector of acute angle between the lines \(3 x-4 y+7=0\) and \(-12 x-5 y+2=0\) is (a) \(11 \mathrm{x}-3 \mathrm{y}+9=0\) (b) \(3 x+11 y-13=0\) (c) \(3 x+11 y-3=0\) (d) \(11 x-3 y+2=0\)
If \(\mathrm{P}(1,2), \mathrm{Q}(4,6), \mathrm{R}(5,7)\) and \(\mathrm{S}(\mathrm{a}, \mathrm{b})\) are the vertices of a parallelogram PQRS then (a) \(a=2, b=4\) (b) \(a=3, b=4\) (c) \(\mathrm{a}=2, \mathrm{~b}=3\) (d) \(a=2, b=5\)
The equations of two straight lines which are parallel to \(\mathrm{x}+7 \mathrm{y}+2=0\) and at unit distance from the point \((1,-1)\) are (a) \(x+7 y+6 \pm 4 \sqrt{2}=0\) (b) \(x+7 y+6 \pm 5 \sqrt{2}=0\) (c) \(2 \mathrm{x}+7 \mathrm{y}+6 \pm 5 \sqrt{2}=0\) (d) \(x+y+6 \pm 5 \sqrt{2}=0\)
The area of the triangle formed by the point \(\left(a, a^{2}\right),\left(b, b^{2}\right)\) \(\left(\mathrm{c}, \mathrm{c}^{2}\right)\) is \((\mathrm{a}, \mathrm{b}, \mathrm{c}\) are three consecutive odd integers) (a) \((1 / 2)(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c}) \mathrm{sq}\) unit (b) 8 sq unit (c) \(16 \mathrm{sq}\) unit (d) \((1 / 2)(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{sq}\) unit
What do you think about this solution?
We value your feedback to improve our textbook solutions.