Chapter 14: Problem 1276
Orthocenter of triangle with vertices \((0,0),(3,4)\) and \((4,0)\) is (a) \([3,(5 / 4)]\) (b) \((3,12)\) (c) \([3,(3 / 4)]\) (d) \((3,9)\)
Chapter 14: Problem 1276
Orthocenter of triangle with vertices \((0,0),(3,4)\) and \((4,0)\) is (a) \([3,(5 / 4)]\) (b) \((3,12)\) (c) \([3,(3 / 4)]\) (d) \((3,9)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA line intersects \(\mathrm{X}\) -axis and Y-axis at \(\mathrm{A}\) and \(\mathrm{B}\) respectively. If \(\mathrm{AB}=15\) and \(\underline{\mathrm{AB}}\) makes a triangle of area 54 units with coordinate axes, then the equation of \(\underline{A B}\) is \(\ldots .\) (a) \(4 x \pm 3 y=36\) or \(3 x \pm 4 y=36\) (b) \(4 x \pm 3 y=24\) or \(3 x \pm 4 y=24\) (c) \(-4 \mathrm{x} \pm 3 \mathrm{y}=24\) or \(-3 \mathrm{x} \pm 4 \mathrm{y}=24\) (d) \(-4 x \pm 3 y=12\) or \(-3 x \pm 4 y=12\)
Four points \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)\) and \(\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)\) are such that \({ }^{4} \sum_{\mathrm{i}=1}\left(\mathrm{x}_{\mathrm{i}}^{2}+\mathrm{y}_{\mathrm{i}}^{2}\right) \leq 2\left(\mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{x}_{2} \mathrm{x}_{4}+\mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{y}_{3} \mathrm{y}_{4}\right)\). Then these points are vertices of (a) Parallelogram (b) Rectangle (c) Square (d) Rhombus
If a vertex of a triangle is \((1,1)\) and the mid-points of two sides through this vertex are \((-1,2)\) and \((3,2)\), then centroid of the triangle is (a) \([(1 / 3),(7 / 3)]\) (b) \([1,(7 / 3)]\) (c) \([-(1 / 3),(7 / 3)]\) (d) \([-1,(7 / 3)]\)
The equation of the lines with slope \(-2\) and intersecting \(\mathrm{x}\) -axis at points distance 3 unit from the origin is...... (a) \(2 \mathrm{x}+\mathrm{y} \pm 6=0\) (b) \(x+2 y \pm 6=0\) (c) \(2 \mathrm{x}+\mathrm{y} \pm 3=0\) (d) \(x+2 y \pm 3=0\)
The equation of a line at a distance \(\sqrt{5}\) units from the origin and the ratio of the intercepts on the axes is \(1: 2\), is \(\ldots \ldots\) (a) \(2 \mathrm{x}+\mathrm{y} \pm 5=0\) (b) \(2 x+y \pm 5=0\) (c) \(x-2 y \pm 5=0\) (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.