Chapter 14: Problem 1276
Orthocenter of triangle with vertices \((0,0),(3,4)\) and \((4,0)\) is (a) \([3,(5 / 4)]\) (b) \((3,12)\) (c) \([3,(3 / 4)]\) (d) \((3,9)\)
Chapter 14: Problem 1276
Orthocenter of triangle with vertices \((0,0),(3,4)\) and \((4,0)\) is (a) \([3,(5 / 4)]\) (b) \((3,12)\) (c) \([3,(3 / 4)]\) (d) \((3,9)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the line \((a+1) x+\left(a^{2}-a-2\right) y+a=0\) is parallel to \(Y-\) axis, then \(\mathrm{a}=\ldots \ldots\) (a) - 1 (b) 2 (c) 3 (d) 1
The equation of line passing through the point of intersection of the lines \(3 \mathrm{x}-2 \mathrm{y}=0\) and \(5 \mathrm{x}+\mathrm{y}-2=0\) and making the angle of measure \(\tan ^{-1}(-5)\) with the positive direction of \(\mathrm{x}\) -axis is \(\ldots \ldots\) (a) \(3 x-2 y=0\) (b) \(5 x+y-2=0\) (c) \(5 \mathrm{x}+\mathrm{y}=0\) (d) \(3 \mathrm{x}+2 \mathrm{y}+1=0\)
If the lines \(\mathrm{x}+(\mathrm{a}-1) \mathrm{y}+1=0\) and \(2 \mathrm{x}+\mathrm{a}^{2} \mathrm{y}-1=0\) are perpendicular then \(\ldots \ldots\) (a) \(|\mathrm{a}|=2\) (b) \(0<\mathrm{a}<1\) (c) \(-1<\mathrm{a}<1\) (d) \(a=-1\)
Find the equation of line passing through the point \((\sqrt{3},-1)\) and at a distance \(\sqrt{2}\) units from the origin. (a) \((\sqrt{3}+1) \mathrm{x}+(\sqrt{3}-1) \mathrm{y}=4\) or \((\sqrt{3}-1) \mathrm{x}-(\sqrt{3}+1) \mathrm{y}=4\) (b) \((\sqrt{3}+1) \mathrm{x}+(\sqrt{3}+1) \mathrm{y}=4\) or \((\sqrt{3}-1) \mathrm{x}+(\sqrt{3}+1) \mathrm{y}=4\) (c) \((\sqrt{3}+1) \mathrm{x}+(\sqrt{3}-1) \mathrm{y}=4\) or \((\sqrt{3}-1) \mathrm{x}+(\sqrt{3}+1) \mathrm{y}=4\) (d) \((\sqrt{3}-1) \mathrm{x}+(\sqrt{3}-1) \mathrm{y}=4\) or \((\sqrt{3}+1) \mathrm{x}+(\sqrt{3}+1) \mathrm{y}=4\)
If \(\mathrm{P}(-1,0), \mathrm{Q}(0,0)\) and \(\mathrm{R}(3,3 \sqrt{3})\) are given points, then the equation of the bisector of \(\angle P Q R\) is \(\ldots \ldots\) (a) \((\sqrt{3} / 2) \mathrm{x}+\mathrm{y}=0\) (b) \(x+(\sqrt{3} / 2) \mathrm{y}=0\) (c) \(\sqrt{3 x}+\mathrm{y}=0\) (d) \(x+\sqrt{3} y=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.