Chapter 14: Problem 1279
\(\mathrm{A}(4,0), \mathrm{B}(0,3), \mathrm{C}(6,1)\) be vertices of triangle \(\mathrm{ABC}\). Slope of bisector of angle \(\mathrm{C}\) will be (a) \(3 \sqrt{2}-7\) (b) \(5 \sqrt{2}-7\) (c) \(6 \sqrt{2}-7\) (d) none
Chapter 14: Problem 1279
\(\mathrm{A}(4,0), \mathrm{B}(0,3), \mathrm{C}(6,1)\) be vertices of triangle \(\mathrm{ABC}\). Slope of bisector of angle \(\mathrm{C}\) will be (a) \(3 \sqrt{2}-7\) (b) \(5 \sqrt{2}-7\) (c) \(6 \sqrt{2}-7\) (d) none
All the tools & learning materials you need for study success - in one app.
Get started for freeThe image of origin in the line \(\mathrm{x}+4 \mathrm{y}=1 \mathrm{is}\) (a) \([(2 / 17),-(8 / 17)]\) (b) \([-(2 / 17),-(8 / 17)]\) (c) \([-(2 / 17),(8 / 17)]\) (d) \([(2 / 17),(8 / 17)]\)
The line parallel to the \(X\) -axis and passing through the intersection of the lines \(\mathrm{ax}+2 \mathrm{by}+3 \mathrm{~b}=0\) and \(\mathrm{bx}-2 \mathrm{ay}-3 \mathrm{a}=0\) where \((\mathrm{a}, \mathrm{b}) \neq(0,0)\) is: (A) above the X-axis at a distance of \((2 / 3)\) from it (B) above the X-axis at a distance of \((3 / 2)\) from it (C) below the X-axis at a distance of \((2 / 3)\) from it (D) below the X-axis at a distance of \((3 / 2)\) from it
The equation of the bisector of acute angle between the lines \(3 x-4 y+7=0\) and \(-12 x-5 y+2=0\) is (a) \(11 \mathrm{x}-3 \mathrm{y}+9=0\) (b) \(3 x+11 y-13=0\) (c) \(3 x+11 y-3=0\) (d) \(11 x-3 y+2=0\)
A variable straight line passes through a fixed point \((a, b)\) intersecting the coordinate axes at \(\mathrm{A}\) and \(\mathrm{B}\). If ' \(\mathrm{O}^{\prime}\) is the origin, then the locus of the centroid of the triangle \(\mathrm{OAB}\) is (a) \(b x+a y=3 x y\) (b) \(\mathrm{bx}+\mathrm{ay}=2 \mathrm{xy}\) (c) \(a x+b y=3 x y\) (d) \(a x+b y=2 x y\)
If the point \([1+(t / \sqrt{2}), 2+(t / \sqrt{2})]\) lies between the two
parallel lines \(x+2 y=1\) and \(2 x+4 y=15\), then the range of \(t\) is \(\ldots
\ldots\)
(a) \(0
What do you think about this solution?
We value your feedback to improve our textbook solutions.