Chapter 14: Problem 1279
\(\mathrm{A}(4,0), \mathrm{B}(0,3), \mathrm{C}(6,1)\) be vertices of triangle \(\mathrm{ABC}\). Slope of bisector of angle \(\mathrm{C}\) will be (a) \(3 \sqrt{2}-7\) (b) \(5 \sqrt{2}-7\) (c) \(6 \sqrt{2}-7\) (d) none
Chapter 14: Problem 1279
\(\mathrm{A}(4,0), \mathrm{B}(0,3), \mathrm{C}(6,1)\) be vertices of triangle \(\mathrm{ABC}\). Slope of bisector of angle \(\mathrm{C}\) will be (a) \(3 \sqrt{2}-7\) (b) \(5 \sqrt{2}-7\) (c) \(6 \sqrt{2}-7\) (d) none
All the tools & learning materials you need for study success - in one app.
Get started for freeOne side of the rectangle lies along the line \(4 \mathrm{x}+7 \mathrm{y}+5=0\). Two of its vertices are \((-3,1)\) and \((1,1)\). Then the equations of other side is (a) \(7 x-4 y+25=0\) (b) \(4 x+7 y=11\) (c) \(7 x-4 y-3=0\) (d) All of these
If the points \([k, 2-2 k],[1-k, 2 k]\) and \([-k-4,6-2 k]\) are collinear, the possible value of \(\mathrm{k}\) are (a) \(-(1 / 2), 1\) (b) \((1 / 2),-1\) (c) \(1.2\) (d) \(1.3\)
The y-intercept of the line \(\mathrm{y}+\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)\) is \(\ldots \ldots\) (a) \(-\left(\mathrm{y}_{1}+\mathrm{mx}_{1}\right)\) (b) \(\mathrm{y}_{1}-\mathrm{mx}_{1}\) (c) \(\left[\left(\mathrm{y}_{1}+\mathrm{mx}_{1}\right) / \mathrm{m}\right]\) (d) None of these
A square of side a lies above the \(\mathrm{x}\) -axis and has one vertex at the origin. The side passing through the origin makes an angle a \(\alpha[0<\alpha<(\pi / 4)]\) with the positive direction of \(\mathrm{x}\) -axis. The eq. of its diagonal not passing through the origin is: (A) \(\mathrm{y}(\cos \alpha+\sin \alpha)+\mathrm{x}(\sin \alpha-\cos \alpha)=\mathrm{a}\) (B) \(\mathrm{y}(\cos \alpha+\sin \alpha)+\mathrm{x}(\sin \alpha+\cos \alpha)=\mathrm{a}\) (C) \(\mathrm{y}(\cos \alpha+\sin \alpha)+\mathrm{x}(\cos \alpha-\sin \alpha)=\mathrm{a}\) (D) \(y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=a\)
Locus of the centroid of the triangle whose vertices are (acost, asint), (bsint, - bcost) and \((1,0)\), where \(t\) is a parameter is (a) \((3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}\) (b) \((3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}\) (c) \((3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}\) (d) \((3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.