Chapter 14: Problem 1280
The locus of the variable point whose distance from \((-2,0)\) is \((2 / 3)\) times its distance from the line \(\mathrm{x}=-(9 / 2)\) is (a) ellipse (b) parabola (c) circle (d) hyperbola
Chapter 14: Problem 1280
The locus of the variable point whose distance from \((-2,0)\) is \((2 / 3)\) times its distance from the line \(\mathrm{x}=-(9 / 2)\) is (a) ellipse (b) parabola (c) circle (d) hyperbola
All the tools & learning materials you need for study success - in one app.
Get started for freeThe angle between the lines \(\\{(\mathrm{x}, 0) /(\mathrm{x} \in \mathrm{R})\\}\) and \(\\{(0, y) /(y \in R)\\}\) is \(\ldots \ldots\) (a) \((\pi / 2)\) (b) \(-(\pi / 2)\) (c) 0 (d) \(\pi\)
If \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in A.P. then \(\mathrm{ax}+\mathrm{by}+\mathrm{c}=0\) represents (a) a single line (b) a family of concurrent lines (c) a family of parallel lines (d) a family of circle
If the lengths of perpendicular drawn from the origin to the lines \(x \cos \alpha-y \sin \alpha=\sin 2 a \alpha\) and \(x \sin \alpha+y \cos \alpha=\cos 2 \alpha\) are \(p\) and \(q\) respectively, then \(p^{2}+q^{2}=\ldots \ldots\) (a) 4 (b) 3 (c) 2 (d) 1
\(\mathrm{A}(4,0), \mathrm{B}(0,3), \mathrm{C}(6,1)\) be vertices of triangle \(\mathrm{ABC}\). Slope of bisector of angle \(\mathrm{C}\) will be (a) \(3 \sqrt{2}-7\) (b) \(5 \sqrt{2}-7\) (c) \(6 \sqrt{2}-7\) (d) none
If \(\mathrm{P}(-1,0), \mathrm{Q}(0,0)\) and \(\mathrm{R}(3,3 \sqrt{3})\), then the equation of bisector of \(\angle P Q R\) is \(\ldots \ldots .\) (a) \((\sqrt{3} / 2) \mathrm{x}+\mathrm{y}=0\) (b) \(x+(\sqrt{3} / 2) y=0\) (c) \(\sqrt{3 x+y}=0\) (d) \(x+\sqrt{3} y=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.