Chapter 14: Problem 1287
Four points \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)\) and \(\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)\) are such that \({ }^{4} \sum_{\mathrm{i}=1}\left(\mathrm{x}_{\mathrm{i}}^{2}+\mathrm{y}_{\mathrm{i}}^{2}\right) \leq 2\left(\mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{x}_{2} \mathrm{x}_{4}+\mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{y}_{3} \mathrm{y}_{4}\right)\). Then these points are vertices of (a) Parallelogram (b) Rectangle (c) Square (d) Rhombus
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.