Chapter 14: Problem 1292
The equation of the bisector of acute angle between the lines \(3 x-4 y+7=0\) and \(-12 x-5 y+2=0\) is (a) \(11 \mathrm{x}-3 \mathrm{y}+9=0\) (b) \(3 x+11 y-13=0\) (c) \(3 x+11 y-3=0\) (d) \(11 x-3 y+2=0\)
Chapter 14: Problem 1292
The equation of the bisector of acute angle between the lines \(3 x-4 y+7=0\) and \(-12 x-5 y+2=0\) is (a) \(11 \mathrm{x}-3 \mathrm{y}+9=0\) (b) \(3 x+11 y-13=0\) (c) \(3 x+11 y-3=0\) (d) \(11 x-3 y+2=0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThree straight lines \(2 \mathrm{x}+11 \mathrm{y}-5=0,4 \mathrm{x}-3 \mathrm{y}-2=0\) and \(24 x+7 y-20=0\) (a) form a triangle (b) are only concurrent (c) are concurrent with one line bisecting the angle between the other two. (d) none of these
Let \(\mathrm{A}(2,-3)\) and \(\mathrm{B}(-2,1)\) be vertices of a triangle \(\mathrm{ABC}\). If the centroid of this triangle moves on the line \(2 x+3 y=1\), then locus of the vertex \(\mathrm{C}\) is the line (a) \(2 \mathrm{x}+3 \mathrm{y}=9\) (b) \(2 x-3 y=7\) (c) \(3 \mathrm{x}+2 \mathrm{y}=5\) (d) \(3 x-2 y=3\)
If \(5 \mathrm{x}+12 \mathrm{y}+13=0\) is transformed into \(x \cos \alpha+\mathrm{ysin} \alpha=\mathrm{p}\) then \(\alpha=? \alpha \in[-\pi, \pi]\) (a) \(\cos ^{-1}[-(5 / 13)]\) (b) \(\sin ^{-1}[-(12 / 13)]\) (c) \(\tan ^{-1}(12 / 5)-\pi\) (d) \(\tan ^{-1}(12 / 5)\)
If a line \(3 \mathrm{x}+4 \mathrm{y}=24\) intersects the axes at \(\mathrm{A}\) and \(\mathrm{B}\), then in radius of \(\Delta \mathrm{OAB}\) is \(\ldots \ldots\) (a) 1 (b) 2 (c) 3 (d) 4
The \(\mathrm{p}-\alpha\) form of the line \(\mathrm{x}+\sqrt{(3) \mathrm{y}-4}=0 \mathrm{is}\) (a) \(x \cos (\pi / 6)+\operatorname{ysin}(\pi / 6)=2\) (b) \(x \cos (\pi / 3)+y \sin (\pi / 3)=2\) (c) \(x \cos [-(\pi / 3)]+y \sin [-(\pi / 3)]=2\) (d) \(x \cos [-(\pi / 6)]+y \sin [-(\pi / 6)]=2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.