Chapter 14: Problem 1303
The nearest point on the line \(3 \mathrm{x}+4 \mathrm{y}=1\) from origin is (a) \([(7 / 25),(4 / 25)]\) (b) \([(7 / 25),(2 / 25)]\) (c) \([(3 / 25),(4 / 25)]\) (d) \([(1 / 25),(3 / 25)]\)
Chapter 14: Problem 1303
The nearest point on the line \(3 \mathrm{x}+4 \mathrm{y}=1\) from origin is (a) \([(7 / 25),(4 / 25)]\) (b) \([(7 / 25),(2 / 25)]\) (c) \([(3 / 25),(4 / 25)]\) (d) \([(1 / 25),(3 / 25)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the \(\mathrm{y}\) -intercept of the perpendicular bisector of the segment obtained by joining \(\mathrm{P}(1,4)\) and \(\mathrm{Q}(\mathrm{k}, 3)\) is \(-4\) then \(\mathrm{k}=\ldots \ldots\) (a) 1 (b) 2 (c) \(-2\) (d) \(-4\)
The equations of the two lines each passing through \((5,6)\) and each making an acute angle of \(45^{\circ}\) with the line \(2 \mathrm{x}-\mathrm{y}+1=0\) is (a) \(3 x+y-21=0, x-3 y+13=0\) (b) \(3 x+y+21=0, x+3 y+13=0\) (c) \(y=2 x, y=3 x\) (d) \(3 \mathrm{x}+\mathrm{y}-21=0, \mathrm{x}-3 \mathrm{y}-13=0\)
A rod having length \(2 \mathrm{c}\) moves along two perpendicular lines, then the locus of the midpoint of the rod is \(\ldots \ldots\) (a) \(x^{2}-y^{2}=c^{2}\) (b) \(x^{2}+y^{2}=c^{2}\) (c) \(x^{2}+y^{2}=2 c^{2}\) (d) None of these
The nearest point on the line \(\mathrm{x}-3 \mathrm{y}+25=0\) from the origin is \(\ldots \ldots\) (a) \((-4,5)\) (b) \((-4,3)\) (c) \((4,3)\) (d) None of these
If \(\mathrm{P}(-1,0), \mathrm{Q}(0,0)\) and \(\mathrm{R}(3,3 \sqrt{3})\) are given points, then the equation of the bisector of \(\angle P Q R\) is \(\ldots \ldots\) (a) \((\sqrt{3} / 2) \mathrm{x}+\mathrm{y}=0\) (b) \(x+(\sqrt{3} / 2) \mathrm{y}=0\) (c) \(\sqrt{3 x}+\mathrm{y}=0\) (d) \(x+\sqrt{3} y=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.