Chapter 14: Problem 1303
The nearest point on the line \(3 \mathrm{x}+4 \mathrm{y}=1\) from origin is (a) \([(7 / 25),(4 / 25)]\) (b) \([(7 / 25),(2 / 25)]\) (c) \([(3 / 25),(4 / 25)]\) (d) \([(1 / 25),(3 / 25)]\)
Chapter 14: Problem 1303
The nearest point on the line \(3 \mathrm{x}+4 \mathrm{y}=1\) from origin is (a) \([(7 / 25),(4 / 25)]\) (b) \([(7 / 25),(2 / 25)]\) (c) \([(3 / 25),(4 / 25)]\) (d) \([(1 / 25),(3 / 25)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(2 \mathrm{x}+3 \mathrm{y}=8\) is perpendicular to the line \((\mathrm{x}+\mathrm{y}+1)+\lambda(2 \mathrm{x}-\mathrm{y}-1)=0\), then \(\lambda=?\) (a) \(-5\) (b) \((3 / 2)\) (c) 5 (d) 0
The equation of a line passing through \((4,3)\) and the sum of whose intercepts is \(-1\) is........ (a) \((\mathrm{x} / 2)+(\mathrm{y} / 3)=1,(\mathrm{x} / 2)+(\mathrm{y} / 1)]=1\) (b) \((\mathrm{x} / 2)+(\mathrm{y} / 3)=-1,[\mathrm{x} /(-2)]+(\mathrm{y} / 1)=1\) (c) \((\mathrm{x} / 2)+(\mathrm{y} / 3)=-1,\\{\mathrm{x} /(-2)\\}+(\mathrm{y} / 1)=-1\) (d) \((\mathrm{x} / 2)-(\mathrm{y} / 3)=1,\\{\mathrm{x} /(-2)\\}+(\mathrm{y} / 1)=1\)
Consider a square OPQR having the length of side a, where \(\mathrm{O}(0,0)\). The sides \(\underline{\mathrm{OP}}\) and \(\underline{\mathrm{OR}}\) are along the positive \(\mathrm{X}\) -axis and Y-axis respectively. If \(\mathrm{A}\) and \(\mathrm{B}\) are the mid points of \(\underline{\mathrm{PQ}}\) and \(Q \underline{R}\) respectively, then the angle between \(\underline{\mathrm{OA}}\) and \(\underline{\mathrm{OB}}\) would be \(\ldots \ldots \ldots\) (a) \(\cos ^{-1}(3 / 5)\) (b) \(\tan ^{-1}(4 / 3)\) (c) \(\cos ^{-1}(3 / 4)\) (d) \(\sin ^{-1}(3 / 5)\)
The sum of squares of intercepts on the axes cut off by the tangents to the curve \(\mathrm{x}^{(2 / 3)}+\mathrm{y}(2 / 3)=\mathrm{a}^{(2 / 3)}(\mathrm{a}>0)\) at \([(\mathrm{a} / 8),(\mathrm{a} / 8)]\) is \(2 .\) Thus a has the value. (a) 1 (b) 2 (c) 4 (d) 8
The circumcentre of the triangle formed by the lines \(\mathrm{x}+\mathrm{y}=0, \mathrm{x}-\mathrm{y}=0\) and \(\mathrm{x}-7=0\) is \(\ldots \ldots\) (a) \((7,0)\) (b) \((3.5,0)\) (c) \((0,7)\) (d) \((3.5,3.5)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.