Chapter 14: Problem 1307
A triangle with vertices \((4,0),(-1,-1),(3,5)\) is (a) isosceles and right angled (b) isosceles but not right angled (c) right angled but not isosceles (d) neither right angled nor isosceles
Chapter 14: Problem 1307
A triangle with vertices \((4,0),(-1,-1),(3,5)\) is (a) isosceles and right angled (b) isosceles but not right angled (c) right angled but not isosceles (d) neither right angled nor isosceles
All the tools & learning materials you need for study success - in one app.
Get started for freeThe length of side of an equilateral triangle is a. There is circle inscribed in a triangle. What is the area of a square inscribed in a circle ? (a) \(\left(\mathrm{a}^{2} / 3\right)\) (b) \(\left(\mathrm{a}^{2} / 6\right)\) (c) \(\left(\mathrm{a}^{2} / \sqrt{3}\right)\) (d) \(\left(a^{2} / \sqrt{2}\right)\)
If two vertices of a triangle are \((5,-1)\) and \((-2,3)\) and if its orthocenter lies at the origin then the coordinates of the third vertex are (a) \((4,7)\) (b) \((-4,-7)\) (c) \((2,-3)\) (d) \((5,-1)\)
\(\mathrm{A}(1,0)\) and \(\mathrm{B}(-1,0)\), then the locus of points satisfying \(\mathrm{AQ}-\mathrm{BQ}=\pm 1\) is \(\ldots \ldots\) (a) \(12 \mathrm{x}^{2}+4 \mathrm{y}^{2}=3\) (b) \(12 \mathrm{x}^{2}-4 \mathrm{y}^{2}=3\) (c) \(12 \mathrm{x}^{2}-4 \mathrm{y}^{2}=-3\) (d) \(12 x^{2}+4 y^{2}=-3\)
Line \(\mathrm{ax}+\mathrm{by}+\mathrm{p}=0\) makes angle \((\pi / 4)\) with \(x \cos \alpha+\) ysin \(\alpha=p, p \in R^{+} .\) If these lines and the line \(x \sin \alpha-y \cos \alpha=0\) are concurrent then (a) \(a^{2}+b^{2}=p^{2}\) (b) \(a^{2}+b^{2}=2 p^{2}\) (c) \(2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=\mathrm{p}\) (d) \(a^{2}-b^{2}=2 p^{2}\)
Orthocenter of triangle with vertices \((0,0),(3,4)\) and \((4,0)\) is (a) \([3,(5 / 4)]\) (b) \((3,12)\) (c) \([3,(3 / 4)]\) (d) \((3,9)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.