Chapter 14: Problem 1307
A triangle with vertices \((4,0),(-1,-1),(3,5)\) is (a) isosceles and right angled (b) isosceles but not right angled (c) right angled but not isosceles (d) neither right angled nor isosceles
Chapter 14: Problem 1307
A triangle with vertices \((4,0),(-1,-1),(3,5)\) is (a) isosceles and right angled (b) isosceles but not right angled (c) right angled but not isosceles (d) neither right angled nor isosceles
All the tools & learning materials you need for study success - in one app.
Get started for free\(\mathrm{A}(-2,5), \mathrm{B}(6,2)\), then \(\underline{\mathrm{AB}}-\underline{\mathrm{AB}}=\ldots \ldots \ldots\) (a) \([(8 t-2,5-3 t) /(t<0)]\) (b) \([(8 t-2,5-3 t) /(0 \leq t \leq 1)]\) (c) \([(8 \mathrm{t}-2,5-3 \mathrm{t}) /\\{\mathrm{t} \in \mathrm{R}-[0,1]\\}]\) (d) \([(8 t-2,5-3 t) /(t>1)]\)
The equation of the lines with slope \(-2\) and intersecting \(\mathrm{x}\) -axis at points distance 3 unit from the origin is...... (a) \(2 \mathrm{x}+\mathrm{y} \pm 6=0\) (b) \(x+2 y \pm 6=0\) (c) \(2 \mathrm{x}+\mathrm{y} \pm 3=0\) (d) \(x+2 y \pm 3=0\)
The y-intercept of the line passing through the point \((2,2)\) and perpendicular to the line \(3 \mathrm{x}+\mathrm{y}-3=0\) is \(\ldots \ldots\) (a) \((3 / 4)\) (b) \((4 / 3)\) (c) \(-(4 / 3)\) (d) \(-(3 / 4)\)
If \(\mathrm{P}(1,2), \mathrm{Q}(4,6), \mathrm{R}(5,7)\) and \(\mathrm{S}(\mathrm{a}, \mathrm{b})\) are the vertices of a parallelogram PQRS then (a) \(a=2, b=4\) (b) \(a=3, b=4\) (c) \(\mathrm{a}=2, \mathrm{~b}=3\) (d) \(a=2, b=5\)
If two perpendicular lines passing through origin intersect the line \((\mathrm{x} / \mathrm{a})+(\mathrm{y} / \mathrm{b})=1, \mathrm{a} \neq 0, \mathrm{~b} \neq 0\) at \(\mathrm{A}\) and \(\mathrm{B}\), then \(\left\\{1 /(\mathrm{OA})^{2}\right\\}+\left\\{1 /(\mathrm{OB})^{2}\right\\}=\ldots \ldots\) (a) \(\left(1 / \mathrm{a}^{2}\right)-\left(1 / \mathrm{b}^{2}\right)\) (b) \(\left[(\mathrm{ab}) /\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\right]\) (c) \(\left[\left(a^{2}+b^{2}\right) /\left(a^{2} b^{2}\right)\right]\) (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.